Callusogenesis features of anthocyanin contrasting varieties of Lactuca sativa L

Authors

  • Yu.V. Pryimak Institute of Biology and Medicine of Taras Shevchenko National University of Kyiv
  • O.E. Smirnov Institute of Biology and Medicine of Taras Shevchenko National University of Kyiv
  • N.Yu. Taran Institute of Biology and Medicine of Taras Shevchenko National University of Kyiv
  • V.V. Schwartau Institute of Plant Physiology and Genetics of the NAS of Ukraine, Kyiv

DOI:

https://doi.org/10.15407/dopovidi2020.07.094

Keywords:

callusogenesis, Lactuca sativa L., Lolo Bionda, Lolo Rossa, primary callus

Abstract

The selection of conditions for the callusogenesis introduction of two anthocyanin contrasting varieties of lettuce (Lactuca sativa L.) — Lolo Bionda (green) and Lolo Rossa (red) was approved. The effect of phytohormonal ratio, treatment with sterilizing agents on the induction of callusogenesis, calli area, consistency and structure of the six-week primary calli of both varieties were compared. Using media with a ratio of growth regulators: 6-benzylaminopurine (BAP) — 0.3 mg/L, naphthylacetic acid (NAA) — 2 mg/L, 2,4-dichlorophenoxyacetic acid (2,4-D) — 0.2 mg/L, and BAP — 10 mg/L, NAA — 0.5 mg/L led to callusogenesis stimulation from the cotyledon leaves explants of both varieties aseptic seedlings. A significant growth stimulation of primary Lolo Rossa calluses under sterilization of explants with mercury chloride and sodium hypochlorite was found. The heterogeneity of the cellular content of calls tissue and the possibility of obtaining loose and compact calluses of both varieties were investigated.

Downloads

Download data is not yet available.

References

FAOSTAT. Lettuce and chicory crop production. Food and Agriculture Organization Statistical Division (2014). Retrieved from http://faostat3.fao.org/faostat-gateway/go/to/search/lettuce

Cheng, D. M., Pogrebnyak, N., Kuhn, P., Krueger, C. G., Johnson, W. D. & Raskin, I. (2014). Development and phytochemical characterization of high polyphenol red lettuce with anti-diabetic properties. PLoS One, 9, e 91571. https://doi.org/10.1371/journal.pone.0091571

Armas, I., Pogrebnyak, N. & Raskin, I. (2017). A rapid and efficient in vitro regeneration system for lettuce (Lactuca sativa L.). Plant Methods, 13, pp. 58. https://doi.org/10.1186/s13007-017-0208-0

Vanjildorj, E., Bae, T.-W., Riu, K.-Z., Kim, S.-Y. & Lee, H.-Y. (2005). Overexpression of Arabidopsis ABF3 gene enhances tolerance to drought and cold in transgenic lettuce (Lactuca sativa). Plant Cell, Tissue Organ. Cult., 83, pp. 41-50. https://doi.org/10.1007/s11240-005-3800-3

Xinrun, Z. & Conner, A. J. (1992). Genotypic effects on tissue culture response of lettuce cotyledons. J. Genet. Breed., 46, pp. 287-290.

Ampomah-Dwamena, C., Conner, A. J. & Fautrier, A. G. (1997). Genotypic response of lettuce cotyledons to regeneration in vitro. Sci. Hortic. (Amsterdam), 71, pp. 137-145. https://doi.org/10.1016/S0304-4238(97)00098-8

Kanamoto, H., Yamashita, A., Asao, H., Okumura, S., Takase, H., Hattori, M., Yokota, A. & Tomizawa, K.-I. (2006). Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res., 15, pp. 205-217. https://doi.org/10.1007/s11248-005-3997-2

Chang, C. M., Penna, S. & Bhagwat, S. G. (2012). Callus induction and plant regeneration from different Triticum species. Asian Australas. J. Plant Sci. Biotechnol., 6, Sp. Iss. 1, pp. 56-62.

Konotop, Y. O., Karpets, L. A., Zinchenko, A. V., Lopatko, S. K., Kovalenko, M. S. & Smirnov, O. E. (2019). Influence of citrate-stabilized Cu- and Mn-nanocolloids on the growth and proliferative activity of Allium cepa L. apical meristems. Dopov. Nac. akad. nauk Ukr., No. 1, pp. 86-92 (in Ukrainian). https://doi.org/10.15407/dopovidi2019.01.086

Mohebodini, M., Javaran, M. J., Mahboudi, F. & Alizadeh, H. (2011). Effects of genotype, explant age and growth regulators on callus induction and direct shoot regeneration of lettuce (Lactuca sativa L.). Aust. J. Crop Sci., 5, pp. 92-95.

Maina, S. M., Emongor Q., Sharma K. K., Gichuki S., Gathaara M. & de Villiers S. M. (2010). Surface sterilant effect on the regeneration efficiency from cotyledon explants of groundnut (Arachis hypogea L.) varieties adapted to Eastern and Southern Africa. Afr. J. Biotechnol., 9, No. 20, pp. 2866-2871.

Tyukavin, G. B. (2007). Carrot biotechnology. Moscow: VNIISSOK (in Russian).

Chiavegatto, R. B., Castro, A. H. F., Marçal, M. G., Pádua, M. S., Alves, E. & Techio, V. H. (2015). Cell viability, mitotic index and callus morphology of Byrsonima verbascifolia (Malpighiaceae). Trop. Plant Biol., 8, No. 3-4, pp. 87-97. https://doi.org/10.1007/s12042-015-9150-3

Hovhannisyan, N. A., Mkrtumyan, M. K. & Yesayan, A. G. (2008). Cytogenetic description of Nerium olean der callus culture. Biol. J. Armenia, 60, No. 1-2, pp. 130-134 (in Russian).

Tikhomirova, L. I., Bazarnova, N. G. & Sinitsyna, A. A. (2018). Histochemical study of xylem cells in in vitro culture of Iris sibirica L. Russ. J. Bioorg. Chem., 44, No. 7, pp. 860-869. https://doi.org/10.1134/S1068162018070129

Published

28.03.2024

How to Cite

Pryimak, Y. ., Smirnov, O. ., Taran, N. ., & Schwartau, V. . (2024). Callusogenesis features of anthocyanin contrasting varieties of Lactuca sativa L . Reports of the National Academy of Sciences of Ukraine, (7), 94–100. https://doi.org/10.15407/dopovidi2020.07.094

Most read articles by the same author(s)