Asymptotic behavior of metric spaces at infinity
DOI:
https://doi.org/10.15407/dopovidi2017.09.009Keywords:
asymptotic boundedness of a metric space, asymptotic finiteness of a metric space, convergence of metric spaces, strong porosity at a pointAbstract
A new sequential approach to investigations of the structure of metric spaces at infinity is proposed. Criteria for the finiteness and boundedness of metric spaces at infinity are found.
Downloads
References
Roe, J. (2003). Lectures on coarse geometry. University Lecture Series 31. Providence, RI: American Mathematical Society.
Protasov, I. & Zarichnyi, M. (2007). General Asymptology. Math. Studies Monograph Series, Vol. 12. Lviv: VNTL Publishers.
Lechiki, A. & Levi, S. (1987). Wijsmann convergence in the hyperspace of a metric space. Bull. Unione Mat. Ital. 1-B, pp. 439-452.
Wijsman, R. A. (1964). Convergence of sequences of convex sets, cones and functions. Bull. Amer. Math. Soc. 70, pp. 186-188. https://doi.org/10.1090/S0002-9904-1964-11072-7
Wijsman, R. A. (1966). Convergence of sequences of convex sets, cones and functions II. Trans. Amer. Math. Soc., 123, No 1, pp. 32-45. https://doi.org/10.1090/S0002-9947-1966-0196599-8
Thomson, B. S. (1985). Real Functions. Lecture Notes in Mathematics, 1170. Berlin etc.: Springer. https://doi.org/10.1007/BFb0074380
Abdullayev, F., Dovgoshey, O. & Küçükaslan, M. (2010). Compactness and boundedness of tangent spaces to metric spaces. Beitr. Algebra Geom., 51, No 2, pp. 547-576.
Dovgoshey, O. & Martio, O. (2011). Tangent spaces to general metric spaces. Rev. Roumaine Math. Pures. Appl., 56, No 2, pp. 137-155.
Bilet, V., Dovgoshey, O. & Küçükaslan, M. (2013). Uniform boundedness of pretangent spaces, local constancy of metric derivatives and strong right upper porosity at a point. J. Anal., 21, pp. 31-55.
Bilet, V. & Dovgoshey, O. (2014). Boundedness of pretangent spaces to general metric spaces. Ann. Acad. Sci. Fenn., 39, No 4, pp. 73-82. https://doi.org/10.5186/aasfm.2014.3902
Aubin, J.-P. & Frankowska, H. (1990). Set-Valued Analysis. Boston, Basel, Berlin: Birkhäuser.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.