Bernstein-type characterization of entire functions

Authors

DOI:

https://doi.org/10.15407/dopovidi2023.01.010

Keywords:

Bernstein theorem, entire function, polynomial approximation, Shauder basis, transfinite diameter

Abstract

Let ε be the set of all entire functions on the complex plane C. Let us consider the class XE of all complex Banach spaces X such that X ⊇ ε . For (X, ⎥⎥ ⋅ ⎥⎥)∈XE and g ∈X we write En, X (g ) = inf {⎥⎥ g − p⎥⎥: p∈Πn }, where Πn is the set of all polynomials with degree at most n. We describe all X ∈XE for which the relation lim n→∞ (En, X( g ))1/n = 0 holds if and only if g ∈ ε.

Downloads

References

Bernstein, S. N. (1926). Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d’une variable réelle. Paris: Gauthier-Villars.

Walsh, J. L. (1926). Über den Grad der Approximation einer analyti schen Funktion. In Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Abteilung der Bayerischen Akademie der Wissenschaften zu München (heft 2) (pp. 223-229). München: Oldenbourg Wissenschaftsverlag. https://doi.org/10.1515/9783486751932-002

Walsh, J. L. & Russell, H. G. (1934). On the convergence and overcon vergence of sequences of polynomials of best simultaneous approximation to several functions analytic in distinct regions. Trans. Amer. Math. Soc., 36, pp. 13-28. https://doi.org/10.2307/1989705

Varga, R. S. (1968). On an extension of a result of S. N. Bernstein. J. Approx. Theory, 1, pp. 176-179. https://doi.org/10.1016/0021-9045(68)90020-8

Kadets, M. I. & Kadets, V. M. (1997). Series in Banach spaces: condit ional and unconditional convergence. Basel, Boston, Berlin: Birkhäuser.

Fekete, M. (1923). Über die Verteilung der Wurzeln bei gewissen algebr aischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z., 17, pp. 228-249. https://doi.org/10.1007/BF01504345

Fekete, M. (1930). Über den transfiniten Durchmesser ebener Punktmengen , II. Math. Z., 32, pp. 215-221. https://doi.org/10.1007/BF01194630

Goluzin, G. M. (1969). Geometric theory of functions of a complex variab le. Providence: American Ma thematical Society.

Batyrev, A. V. (1951). On the problem of best approximation of an analyt ic function by polynomials. Dokl. Akad. Nauk SSSR, 26, pp. 173-175 (in Russian).

Winiarski, T. (1970). Approximation and interpolation of entire function s. Ann. Pol. Math., 23, pp. 259-273.

Dovgoshey, A. A. (1995). Uniform polynomial approximation of entire func tions on arbitrary compact sets in the complex plane. Math. Notes, 58, No. 3, pp. 921-927. https://doi.org/10.1007/BF02304768

Walsh, J. L. (1946). Taylor’s series and approximation to analytic funct ions. Bull. Amer. Math. Soc., 52, pp. 572—579.

Myrberg, P. J. (1933). Über die Existenz der Greenschen Funktionen auf e nier Gegebenen Riemannschen Fläche. Acta Math., 61, pp. 39-79. https://doi.org/10.1007/BF02547786

Naftalevich, A. G. (1969). On the approximation of analytic functions by a lgebraic polynomials. Litovsk. Matem. Sb., 9, No. 3, pp. 577-588 (in Russian). 15. Enflo, P. (1973). A counterexample to the approximation problem in Banach spaces. Acta Math., 130, No. 1, pp. 309-317. https://doi.org/10.1007/BF02392270

Downloads

Published

09.03.2023

How to Cite

Dovgoshey, O. ., Prestin, J. ., & Shevchuk, I. . (2023). Bernstein-type characterization of entire functions. Reports of the National Academy of Sciences of Ukraine, (1), 10–15. https://doi.org/10.15407/dopovidi2023.01.010

Section

Mathematics