Derivations and automorphisms of locally matrix algebras and groups
DOI:
https://doi.org/10.15407/dopovidi2020.09.019Keywords:
automorphism, derivation, locally matrix algebraAbstract
We describe derivations and automorphisms of infinite tensor products of matrix algebras. Using this description, we show that, for a countable–dimensional locally matrix algebra A over a field F, the dimension of the Lie algebra of outer derivations of A and the order of the group of outer automorphisms of A are both equal to | F |ℵ0 , where |F| is the cardinality of the field F.
Let A* be the group of invertible elements of a unital locally matrix algebra A. We describe isomorphisms of groups [A*, A*]. In particular, we show that inductive limits of groups SLn(F) are determined by their Steinitz numbers.
Downloads
References
Kurosh, A. (1942). Direct decompositions of simple rings. Rec. Math. [Mat. Sbornik] N.S., 11, No. 3, pp. 245-264.
Steinitz, E. (1910). Algebraische Theorie der Körper. J. Reine Angew. Math., 137, pp. 167-309.
Glimm, J.G. (1960). On a certain class of operator algebras. Trans. Amer. Math. Soc., 95, No. 2, pp. 318-340.
Bezushchak, O. & Oliynyk, B. (2020). Unital locally matrix algebras and Steinitz numbers. J. Algebra Appl. https://doi.org/10.1142/S0219498820501807
Bezushchak, O. & Oliynyk, B. (2020). Primary decompositions of unital locally matrix algebras. Bull. Math. Sci., 10, No. 1. https://doi.org/10.1142/S166436072050006X
Ayupov, S. & Kudaybergenov, K. (2020). Infinite dimensional central simple regular algebras with outer derivations. Lobachevskii J. Math., 41, No. 3, pp. 326-332. https://doi.org/10.1134/S1995080220030063
Strade, H. (1999). Locally finite dimensional Lie algebras and their derivation algebras. Abh. Math. Sem. Univ. Hamburg, 69, pp. 373-391. https://doi.org/10.1007/BF02940886
Willard, S. (2004). General Topology. Mineola, New York: Dover Publications.
Köthe, G. (1931). Schiefkörper unendlichen Ranges uber dem Zentrum. Math. Ann., 105, pp. 15-39.
Bezushchak, O.O. & Sushchans’kyi, V.I. (2016). Groups of periodically defined linear transformations of an infinite-dimensional vector space. Ukr. Math. J., 67, No. 10, pp. 1457-1468. https://doi.org/10.1007/s11253-016-1165-x
Drozd, Yu.A. & Kirichenko, V.V. (1994). Finite dimensional algebras. Berlin, Heidelberg, New York: Springer.
Golubchik, I.Z. & Mikhalev, A.V. (1983). Isomorphisms of the general linear group over an associative ring. Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 3, pp. 61-72.
Golubchik, I.Z. (1998). Linear groups over associative rings (Unpublished Doctor thesis). Ufa Scientific Center, Bashkir State Pedagogical Institute, Ufa, Russia (in Russian).
Zelmanov, E.I. (1985). Isomorphisms of linear groups over associative rings. Sib. Mat. Zh., 26, No. 4, pp. 49-67.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.