Algebraic theory of measure algebras
DOI:
https://doi.org/10.15407/dopovidi2023.02.003Keywords:
measure algebra, locally matrix algebra, Boolean algebra, Hamming spaces, Steinitz numberAbstract
A. Horn and A. Tarski initiated the abstract theory of measure algebras. Independently V. Sushchansky, B. Oliynyk and P. Cameron studied the direct limits of Hamming spaces. In the current paper, we introduce new examples of locally standard measure algebras and complete the classification of countable locally standard measure algebras. Countable unital locally standard measure algebras are in one-to-one correspondence with Steinitz numbers. Given a Steinitz number s such measure algebra is isomorphic to the Boolean algebra of s-periodic sequences of 0 and 1. Nonunital locally standard measure algebras are parametrized by pairs (s, r), where s is a Steinitz number and r is a real number greater or equal to 1. We also show that an arbitrary (not necessarily locally standard) measure algebra is embeddable in a metric ultraproduct of standard Hamming spaces. In other words, an arbitrary measure algebra is sofic.
Downloads
References
Horn, A. & Tarski, A. (1948). Measures in Boolean algebras. Trans. Amer. Math. Soc., 64, pp. 467-497. https://doi.org/10.2307/1990396
Jech, T. (2008). Algebraic characterizations of measure algebras. Proc. Amer. Math. Soc., 136, pp. 1285-1294.
Maharam, D. (1947). An algebraic characterization of measure algebras. Ann. Math. Ser. 2., 48, pp. 154-167. https://doi.org/10.2307/1969222
Vershik, A. M. (1995). Theory of decreasing sequences of measurable partitions. St. Petersburg Math. J., 6, No. 4, pp. 705-761.
Steinitz, E. (1910). Algebraische Theorie der Körper. J. Reine Angew. Math., 137, pp. 167-309. https://doi.org/10.1515/crll.1910.137.167
Glimm, J. G. (1960). On a certain class of operator algebras. Trans. Amer. Math. Soc., 95, No. 2, pp. 318-340. https://doi.org/10.2307/1993294
Bezushchak, O. & Oliynyk, B. (2020). Primary decompositions of unital locally matrix algebras. Bull. Math. Sci., 10, No. 1. https://doi.org/10.1142/S166436072050006X
Bezushchak, O. & Oliynyk, B. (2020). Unital locally matrix algebras and Steinitz numbers. J. Algebra Appl., 19, No. 9. https://doi.org/10.1142/S0219498820501807
Kurochkin, V. M. (1948). On the theory of locally simple and locally normal algebras. Mat. Sb., Nov. Ser., 22(64), No. 3, pp. 443-454 (in Russian).
Bezushchak, O. & Oliynyk, B. (2021). Hamming spaces and locally matrix algebras. J. Algebra Appl., 20, No. 8. https://doi.org/10.1142/S0219498821501474
Elek, G. & Szabó, E. (2006). On sofic groups. J. Group Theory, 9, No. 2, pp. 161-171. https://doi.org/10.1515/JGT.2006.011
Gromov, M. (1999). Endomorphism of symbolic algebraic varieties. J. Eur. Math. Soc., 1, No. 2, pp. 109-197. https://doi.org/10.1007/PL00011162
Mal’cev, A. I. (1973). Algebraic system. Berlin, Heidelberg: Springer.
Downloads
Published
How to Cite
Section
License
Copyright (c) 2023 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.