On some relationships between the factors of the canonical central series of Leibniz algebras
DOI:
https://doi.org/10.15407/dopovidi2016.03.014Keywords:
Leibniz algebra, Lie algebra, lower central series, upper central seriesAbstract
We have proved that the finiteness of the codimension of some member ζk(L) of the upper central series of the Leibniz algebra L yields the finiteness of the dimension of γk+1(L) and give the bounds of this finiteness
Downloads
References
Loday J. L. Enseign. Math., 1993, 39: 269–293.
Albeverio S. A., Ayupov Sh. A., Omirov B. A. Commun. Algebra, 2005, 33: 159–172. https://doi.org/10.1081/AGB-200040932
Barnes D. Commun. Algebra, 2011, 39: 2463–2472. https://doi.org/10.1080/00927872.2010.489529
Barnes D. Bull. Australian Math. Soc, 2012, 86: 184–185. https://doi.org/10.1017/S0004972711002954
Barnes D. Commun. Algebra, 2012, 40: 1388–1389. https://doi.org/10.1080/00927872.2010.551532
Barnes D. Commun. Algebra, 2013, 41: 4046–4065. https://doi.org/10.1080/00927872.2012.700978
Patsourakos A. Commun. Algebra, 2007, 35: 3828–3834. https://doi.org/10.1080/00927870701509099
Ray C. B., Combs A., Gin N., Hedges A., Hird J. T., Zack L. Commun. algebra, 2014, 42: 2404–2410. https://doi.org/10.1080/00927872.2012.717655
Stewart I. N. Proc. London Math. Soc., 1974, 28: 129–140. https://doi.org/10.1112/plms/s3-28.1.129
Baer R. Math. Ann., 1952, 124: 161–177. https://doi.org/10.1007/BF01343558
Vaughan-Lee M. R. J. London Math. Soc., 1972, 5: 673–680. https://doi.org/10.1112/jlms/s2-5.4.673
Neumann B. H. Proc. London Math. Soc., 1951, 1: 178–187. https://doi.org/10.1112/plms/s3-1.1.178
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.