About the structure of finite groups, whose all non-Abelian subgroups are subnormal

Authors

  • L. A. Kurdachenko
  • M. M. Semko
  • S. Atlihan

DOI:

https://doi.org/10.15407/dopovidi2014.04.015

Keywords:

finite groups, non-Abelian subgroups

Abstract

We study infinite groups, all non-Abelian subgroups of which are subnormal. Some results of these groups' structure and the full description of locally finite groups having a specified property are given.

Downloads

References

Dixon M. R., Subbotin I. Ya. Algebra and Discrete Mathematics., 2009, No. 4: 29–54 (in Russian).

Romalis G. M., Sesekin N. F. Mat. zap. Ural. un-ta, 1966, 5, No. 3: 45–49 (in Russian).

Sesekin N. F., Romalis G. M. Mat. zap. Ural. un-ta, 1968, 6, No. 5: 50–53 (in Russian).

Romalis G. M., Sesekin N. F. Mat. zap. Ural. un-ta, 1970, 7, No. 3: 195– 199 (in Russian).

Nagrebetsky V. T. Mat. zap. Ural. un-ta, 1967, 6, No. 1: 80–88 (in Russian).

Makheev A. A. Mat. zap. Ural. un-ta, 1976, 10, No. 1: 60–75. (in Russian).

Kuzenny N. F., Semko N. N. Mat. zametki, 1983, 34, No. 2: 179–188 (in Russian).

Kuzenny N. F, Semko N. N. Dopov. AN UkrSSR, 1985, No. 2: 6–9 (in Ukrainian).

Kuzenny N. F., Semko N. N. Izv. vuzov. Matematika, 1986, No. 11: 32–40 (in Russian).

Kuzenny N. F., Semko N. N. Ukr. mat. zhurn., 1987, 39, No. 2: 180–185 (in Russian).

Nagrebetskiy V. T. Mat. zap. Ural. un-ta, 1968, 6, No. 3: 45–49 (in Russian).

Smith H. Quaderni di Matematica, Topics in infinite groups, 2001, 8: 298–308.

Smith H. Quaderni di Matematica, Topics in infinite groups, 2001, 8: 309–326.

Knyagina V. N., Monakhov V. S. Sib. mat. zhurn., 2004, 45, No. 6: 1316–1322 (in Russian).

Vedernikov V. A. Algebra i logika, 2007, 46, No. 6: 669–687 (in Russian).

Published

17.02.2025

How to Cite

Kurdachenko, L. A., Semko, M. M., & Atlihan, S. (2025). About the structure of finite groups, whose all non-Abelian subgroups are subnormal . Reports of the National Academy of Sciences of Ukraine, (4), 15–18. https://doi.org/10.15407/dopovidi2014.04.015