Assessment of the effect of carbon nanohorns on the microviscosity of membranes of erythrocytes and rat plasma proteins by the method of spin probes

Authors

  • N.T. Kartel Chuiko Institute of Surface Chemistry of the NAS of Ukraine, Kiev
  • L.V. Ivanov Chuiko Institute of Surface Chemistry of the NAS of Ukraine, Kiev
  • A.N. Lyapunov Institute for Single Crystals of the NAS of Ukraine, Kharkiv
  • O.A. Nardid Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine, Kharkiv
  • Ya.O. Cherkashina Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine, Kharkiv
  • О.А. Gurova Nikolaev Institute of Inorganic Chemistry of the SB of RAS, Novosibirsk
  • A.V. Ocotrub Nikolaev Institute of Inorganic Chemistry of the SB of RAS, Novosibirsk

DOI:

https://doi.org/10.15407/dopovidi2017.12.073

Keywords:

anisotropy of SPR spectra, carbon nanochorns, cytotoxicity, method of spin probes, microviscosity of erythrocyte membranes, polarity of the microenvironment of a probe in the membrane, serum albumin

Abstract

By the method of spin probes, we have studied the effect of initial and oxidized carbon nanoshorns on the microviscosity of rat erythrocyte membranes and the viscosity of the water-containing plasma protein matrix. Introduction of nanohorns in a concentration of 100 μg/ml into erythrocyte suspension results in an increase in the membrane microviscosity within four hours (about 60 % effect), increasing the polarity of a microenvironment for lipophilic probes in the outer layer of membrane phospholipids, and a disorder of erythrocyte's membranes. Introduction of nanohorns in plasma leads to a slight reduction in the viscosity of water and the protein matrix, apparently, due to its partial destruction, especially macromolecules of serum albumin. Cytotoxicity of pristine and oxidized nanohorns evaluated by us is higher as compared to the nanoparticles of oxidized graphene, but is significantly lower than the carbon nanotubes, which are capable of dramatically increasing the microviscosity of membranes of erythrocytes and disrupting their integrity.

Downloads

References

Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., Kokai, F. & Takahashi, K. (1999). Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys.Lett., 309, Iss. 3-4, pp. 165-170. doi: https://doi.org/10.1016/S0009-2614(99)00642-9

Murata, K., Kaneko, K., Kokai, F., Takahashi, K., Yudasaka, M. & Iijima, S. (2000). Pore structure of singlewall carbon nanohorn aggregates. Chem. Phys. Lett., 331, pp. 14-20. doi: https://doi.org/10.1016/S0009-2614(00)01152-0

Piotrovsky, L.B. & Melik-Ogandzhanyan, R. G. (2011). Properties and biological potential of single-walled carbon nanohorns (SWCNH). FARMA, No. 1, pp. 120-128 (in Russian).

Ajima, K., Yudasaka, M., Murakami, T., Maigné, A., Shiba, K. & Iijima, S. (2005). Carbon nanohorns as anticancer drug carriers. Mol. Pharm., 2, pp. 475-480. doi: https://doi.org/10.1021/mp0500566

Liechtenstein, G. I. (1974). The method of spin labels in molecular biology. Moscow: Nauka (in Russian).

Berliner, L. (Ed). (1979). The method of spin labels. Theory and applications. Moscow: Mir (in Russian).

Kartel, N.T., Ivanov, L.V., Karachevtsev, V.A., Lyapunov, A.N., Nardid, O.A., Cherkashina, Ya.O., Leontiev, V.S. & Ivanov, A.Yu. (2017). Estimation of the interaction of oxidized graphene with rat's erythrocyte membranes and blood plasma proteins by the method of spin probes. Dopov. Nac. acad. nauk Ukr., No. 8, pp. 71-79 (in Russian). doi: https://doi.org/10.15407/dopovidi2017.08.071

Moiseeva, N. N., Kravchenko, L. P., Semenchenko, A. A. & Petrenko, A. Yu. (2002). Effect of transplantation of hepatocytes subjected to hypothermic storage on liver regeneration in rats after partial hepatectomy. Probl. Cryobiol., No. 1, pp. 24-31 (in Russian).

Okotrub, A. V., Shevtsov, Yu. V., Nasonova, L. I., Sinyakov, D. E., Chuvilin, A. L., Gutakovskiy, A. K. & Mazalov, L. N. (1996). Synthesis of monolayer closed carbon particles in an electric arc discharge. Inorganic

materials, 32, No. 8, pp. 974-978.

Gurova, O. A., Omelyanchuk, L. V., Dubatolova, T. D., Antohin, E. I., Eliseev, V. S., Yushina, I. V. & Okotrub, A. V. (2017). Synthesis and modification of the structure of carbon nanochannels for use in hyperthermia. J. Struct. Chem., 58, No. 6, pp. 1252-1259.

Ivanov, L. V., Lyapunov, O. M., Kartel, M. T., Nardid, O. A., Okotrub, A. V., Kirilyuk, I. A. & Cherkashina, Ya. O. (2014). Delivery of spin probes by carbon nanotubes in erythrocytes and plasma of blood. Surface, Iss. 6, pp. 292-304.

Kartel, M. T., Ivanov, L. V., Lyapunov, O. M., Nardid, O. A., Okotrub, A. V., Kirilyuk, I. A. & Cherkashina, Ya. O. (2015). Estimation of the effect of carbon nanotubes on the microviscosity of erythrocyte membranes by the spin probe method. Dopov. Nac. akad. nauk Ukr., No. 3, pp.114-121 (in Russian). doi: https://doi.org/10.15407/dopovidi2015.03.114

Zhdanov, R.I. (1981). Paramagnetic models of biologically active compounds. Moscow: Nauka (in Russian).

Published

23.09.2024

How to Cite

Kartel, N., Ivanov, L., Lyapunov, A., Nardid, O., Cherkashina, Y., Gurova О., & Ocotrub, A. (2024). Assessment of the effect of carbon nanohorns on the microviscosity of membranes of erythrocytes and rat plasma proteins by the method of spin probes . Reports of the National Academy of Sciences of Ukraine, (12), 73–82. https://doi.org/10.15407/dopovidi2017.12.073

Most read articles by the same author(s)