DSC investigation of the influence of human placenta fractions on the thermal stability of protein complexes of erythrocyte membranes

Authors

  • Yu.S. Govorova Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine, Kharkiv
  • O.V. Zinchenko Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine, Kharkiv
  • O.Yu. Semenchenko Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine, Kharkiv
  • O.M. Bobrova Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine, Kharkiv
  • E.О. Nardid Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine, Kharkiv
  • O.A. Nardid Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine, Kharkiv

DOI:

https://doi.org/10.15407/dopovidi2018.03.116

Keywords:

differential scanning calorimetry, erythrocyte ghosts, placenta extracts fractions, thermal denaturation

Abstract

The effect of placenta extracts fractions on the thermal denaturation of erythrocyte membrane-bound proteins is investigated by differential adiabatic scanning calorimetry. Four transitions are registrated on a denaturation thermogram of white erythrocyte ghosts. Adding the placenta extracts fractions to the suspension of erythrocyte membrane-bound proteins leads to increasing the temperature of all protein groups except spectrin.

Downloads

Download data is not yet available.

References

Parolini O., Soncini M. (2011). Placenta as a source of stem cells and as a key organ for fetomaternal tolerance. In Regenerative medicine using pregnancy-specific biological substances (pp. 11-23). London: Springer. doi: https://doi.org/10.1007/978-1-84882-718-9_2

Wang, F., Wang, L., Xu, Zh. & Liang, G. (2013). Identification and analysis of multi-protein complexes in placenta. PLoS ONE, 8, No. 4. doi: https://doi.org/10.1371/journal.pone.0062988

Nardid, O., Repina, S., Rozanova, E., Cherkashina, Ya. & Nardid, E. (2015). Properties of aqueous-saline human placental extracts and their fractions after storage of placenta at various subzero temperatures. J. Exp. Integr. Med., 5. No. 4, pp. 172-177. doi: https://doi.org/10.5455/jeim.231115.or.141

Lyubarev, A. E. & Kurganov, B. I. (2000). The studing of irreversible protein denaturation by differential scanning calorimetry method. Uspehi biologicheskoy himii, 40, No. 1-3, pp. 43-84 (in Russian).

Zinchenko, A. V., Bobrova, E. N., Govorova, Yu. S., Rozanova, E. D. & Karpenko, V. G. (2015). Effect of low temperature storage of human placenta on phase transitions in fractions of placental extracts and in mixtures of the fractions with cells. Probl. Cryobiol. Cryomed., 25, No. 2, pp. 122-130. doi: https://doi.org/10.15407/cryo25.02.122

Ku, T., Lu, P., Chan, C., Wang, T., Lai, S. Lyu, P. & Hsiao, N. (2009). Predicting melting temperature directly from protein sequence. Comput. Biol. Chem., 33, pp. 445-450. doi: https://doi.org/10.1016/j.compbiolchem.2009.10.002

Marangoni, A. G. & Suresh, S. N. (2002). Physical properties of lipids. Washington: CRC Press. doi: https://doi.org/10.1201/9780203909171

Lapshina, E. I. & Zavodnik, I. B. (1994). Thermostability of erythrocyte membrains proteins with erythrocyte and medium compounds varying. Biophizika, 39, No. 6, pp. 1015-1020 (in Russian).

Matveev, A. V., Akoev, V. R., Tarakhnovskii, Yu. S., Deev, A. A., Bryukhanov, V. M., Zhadan, G. G. & Shnyrov, V. L. (1997). A comparative study of structural transitions in erythrocyte membranes of adult donors and neonates. Bull. Exp. Biol. Med., 123, No. 2, pp. 196-200. doi: https://doi.org/10.1007/BF02766443

Ivanov, I. T., Brahler, M., Georgieva, G. & Baumler, H. (2007). Role of the membrane proteins in thermal damage and necrosis of red blood cells. Thermochim. Acta, 456, No. 1, pp. 7-12. doi: https://doi.org/10.1016/j.tca.2007.01.020

Published

09.05.2024

How to Cite

Govorova, Y., Zinchenko, O., Semenchenko, O., Bobrova, O., Nardid, E., & Nardid , O. (2024). DSC investigation of the influence of human placenta fractions on the thermal stability of protein complexes of erythrocyte membranes . Reports of the National Academy of Sciences of Ukraine, (3), 116–122. https://doi.org/10.15407/dopovidi2018.03.116