Approximation of 2π-periodic functions by Taylor—Abel—Poisson operators in the integral metric

Authors

  • J. Prestin Institute of Mathematics, University of Lübeck, Germany
  • V.V. Savchuk Institute of Mathematics of the NAS of Ukraine, Kiev
  • A.L. Shidlich Institute of Mathematics of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2017.01.017

Keywords:

direct approximation theorem, inverse approximation theorem, K-functional, linear approximation method

Abstract

We obtain direct and inverse approximation theorems of 2π-periodic functions by Taylor — Abel — Poisson operators in the integral metric.

Downloads

References

Savchuk V.V. Ukr. Math. J., 2007, 59, No 9: 1397-1407. https://doi.org/10.1007/s11253-007-0094-0

Savchuk V.V., Shidlich, A.L. Acta Sci. Math., 2014, 80, No 3-4: 477-489.

Leis R. Arch. Math., 1963, 14: 120-129. https://doi.org/10.1007/BF01234932

Butzer P.L., Sunouchi G. Math. Ann., 1964, 155: 316-330. https://doi.org/10.1007/BF01354864

Rudin W. Function theory in polydiscs, New York: Benjamin, 1969.

DeVore R.A., Lorentz G.G. Constructive approximation, Berlin: Springer, 1993. https://doi.org/10.1007/978-3-662-02888-9

Downloads

Published

22.05.2024

How to Cite

Prestin, J., Savchuk, V., & Shidlich, A. (2024). Approximation of 2π-periodic functions by Taylor—Abel—Poisson operators in the integral metric . Reports of the National Academy of Sciences of Ukraine, (1), 17–20. https://doi.org/10.15407/dopovidi2017.01.017