Peculiarities of the radiation-induced bystander effect manifestation in human peripheral blood lymphocytes due to action of astaxantine

Authors

  • S.R. Rushkovsky Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv
  • D.A. Kurinnyi National Research Center for Radiation Medicine of the NAMS of Ukraine, Kyiv
  • O.M. Demchenko National Research Center for Radiation Medicine of the NAMS of Ukraine, Kyiv
  • M.A. Pilinska National Research Center for Radiation Medicine of the NAMS of Ukraine, Kyiv

DOI:

https://doi.org/10.15407/dopovidi2019.09.082

Keywords:

astaxanthine, bystander effect, Comet assay, human peripheral blood lymphocytes, γ-irradiation

Abstract

Using the method of Comet assay under neutral conditions, the effect of astaxanthin on the manifestation of the bystander effect is studied. Intact human lymphocytes were cocultivated with lymphocytes γ-irradiated in vitro in a dose 0.5 Gy. A considerable decrease in the DNA exit in cultures of bystander cells compared with the control cultures is shown. This phenomenon can be explained by the existence, in the culture of bystander lymphocyte, a significant number of damaged cells, in which the checkpoint on the S phase of the cell cycle is activated. Аstaxanthin had an influence on the realization of the bystander effect by reducing the number of cells, which obviously stopped their division in the S phase of the cell cycle, and increasing the frequency of cells with high level of DNA fragmentation as well.

Downloads

Download data is not yet available.

References

Buonanno, M., de Toledo, S. M., Pain, D. & Azzama, E. I. (2011). Long-term consequences of radiation-induced bystander effects depend on radiation quality and dose and correlate with oxidative stress. Radiat Res., 175, No. 4, pp. 405-415. doi: https://doi.org/10.1667/RR2461.1

Shemetun, O. V. & Pilinska, M. A. (2007). Radiation-induced bystander effect. Cytol. Genet., 41, No. 4, pp. 66-71. doi: https://doi.org/10.3103/S0095452707040111

Ambati, R. R., Phang, S. M., Ravi, S. & Aswathanarayana, R. G. (2014). Astaxanthin: sources, extraction, stability, biological activities and its commercial applications. Mar. Drugs., 12, No. 1, pp. 128-152. doi: https://doi.org/10.3390/md12010128

Tago, Y., Fujii ,T., Wada, J., Kato, M., Wei, M., Wanibuchi, H. & Kitano, M. (2014). Genotoxicity and subacute toxicity studies of a new astaxanthin-containing Phaffia rhodozyma extract. J. Toxicol. Sci., 9, No. 3, pp. 373-382. doi: https://doi.org/10.2131/jts.39.373

Rushkovsky, S. R., Кurinnyi, D. А., Demchenko, O. M. & Pilinska, M. А. (2018). Radioprotective properties of astaxanthin: The impact on radiation induced chromosomal aberrations and DNA breaks in human lymphocytes in vitro. In Reeve, T. (Ed.). Ionizing radiation. Advances in research and applications (pp. 221-240). New York: Nova science publishers.

Kurinnyi, D. А., Rushkovsky, S. R., Demchenko, O. M., Dibska, O. B. & Pilinska, M. А. (2018). Comparison of the modifying effect of astaxanthin on the development of radiation-induced chromosomal instability in human lymphocytes exposed in vitro at different stages of the cell cycle. Cytol. Genet., 52, No. 5, pp. 368-373. doi: https://doi.org/10.3103/S0095452718050055

Afanasieva, K., Zazhytska, M. & Sivolob, A. (2010). Kinetics of comet formation in single-cell gel electrophoresis: loops and fragments. Electrophoresis, 31, pp. 512-519. doi: https://doi.org/10.1002/elps.200900421

Gyori, B. M., Venkatachalam, G., Thiagarajan, P. S., Hsu, D. & Clement, M. (2014). OpenComet: An automated tool for comet assay image analysis. Redox Biol., 2, pp. 457-465. doi: https://doi.org/10.1016/j.redox.2013.12.020

Rosner, B. (2015). Fundamentals of Biostatistics. 8th ed. Cengage Learning. 962 pp.

Olive, P. L. & Durand, R. E. (2005). Heterogeneity in DNA damage using the comet assay. Cytometry, 66, pp. 1-8. doi: https://doi.org/10.1002/cyto.a.20154

Burhans, W. C. & Weinberger, M. (2007). DNA replication stress, genome instability and aging. Nucleic Acids Res., 35 No. 22, pp. 7545-7556. doi: https://doi.org/10.1093/nar/gkm1059

Кurinnyi, D. А., Demchenko, O. M., Romanenko, M. G. & Rushkovsky, S. R. (2018). The impact of astaxanthin on the level of DNA methylation in irradiated in vitro human lymphocytes. Probl. Radiat. Med. Radiobiol., 23, pp. 235-245. doi: https://doi.org/10.33145/2304-8336-2018-23-235-245

Afanasieva, K. S., Chopei, M. I., Lozovik, A. V., Rushkovsky, S. R. & Sivolob, A. V. (2016). Redistribution of DNA loop domains in human lymphocytes under blast transformation with interleukin 2. Ukr. Biochem. J., 88, No. 6, pp. 45-51. doi: https://doi.org/10.15407/ubj88.06.045

Published

24.04.2024

How to Cite

Rushkovsky, S., Kurinnyi, D., Demchenko, O., & Pilinska, M. (2024). Peculiarities of the radiation-induced bystander effect manifestation in human peripheral blood lymphocytes due to action of astaxantine . Reports of the National Academy of Sciences of Ukraine, (9), 82–87. https://doi.org/10.15407/dopovidi2019.09.082