SYNTHESIS AND STUDY OF APATITE-RELATED IRONAND CARBONATE-CONTAINING CALCIUM PHOSPHATES

Authors

DOI:

https://doi.org/10.15407/dopovidi2024.02.044

Keywords:

apatite, iron(III), carbonate-anion, FTIR spectroscopy, in vitro bioactivity.

Abstract

Calcium phosphates have been synthesized from aqueous solutions at molar ratios: Ca2+ : Fe3+ : PO4 3− : CO3 2− = 10 — y : х : (6 − z) : z (х = 0.1, 0.25, 0.5 and 1; z = 0, 0.3 and 0.5) and temperature 25 ºС with further heating to 500 ºС for 2 hours. According to X-ray power diff raction data, phases associated with apatite (hexagonal system) were obtained; phosphate cell parameters correlate with the amount of iron and carbonate in their composition. It was established that the particle sizes do not depend on the ratio of components in the initial solution and are within the range of 20-27 nm. FTIR spectroscopy results confi rm the partial substitution of phosphate for carbonate (B-type) in the apatite-type structure. The study of bioactivity of synthesized iron- and carbonate-containing calcium phosphates in vitro has shown the possibility of regulating the pH of the medium by varying the content and nature of alloying elements, which in the future can meet various requirements related to pH regulation of the medium with the help of such synthetic materials.

Downloads

Download data is not yet available.

References

Jiang, Y., Yua, Z. & Huang, J. (2019). Substituted hydroxyapatite: a recent development. Mater. Technol., 35, No. 11-12, pp. 785-796. https://doi.org/10.1080/10667857.2019.1664096

Wang, X., Huang, S. & Peng, Q. (2023). Metal ion-doped hydroxyapatite-based materials for bone defect restoration. Bioengineering, 10, No. 12, 1367. https://doi.org/10.3390/bioengineering10121367

Brunello, G., Panda, S., Schiavon, L., Sivolella, S., Biasetto, L. & Del Fabbro, M. (2020). The impact of bioceramic scaffolds on bone regeneration in preclinical in vivo studies: A systematic review. Materials, 13, No. 7, 1500. https://doi.org/10.3390/ma13071500

Ratnayake, J. T. B., Mucalo, M. & Dias, G. J. (2016). Substituted hydroxyapatites for bone regeneration: A review of current trends. J. Biomed. Mater. Res. BAppl. Biomater., 105, No. 5, pp. 1285-1299. https://doi.org/10.1002/jbm.b.33651

Panda, S., Biswas, C. K. & Paul, S. (2021). A comprehensive review on the preparation and application of calcium hydroxyapatite: A special focus on atomic doping methods for bone tissue engineering. Ceram. Int., 47, No. 20, pp. 28122-28144. https://doi.org/10.1016/j.ceramint.2021.07.100

Ressler, A., Žužić, A., Ivanišević, I., Kamboj, N. & Ivanković, H. (2021). Ionic substituted hydroxyapatite for bone regeneration applications: A review. Open Ceram., 6, 100122. https://doi.org/10.1016/j.oceram.2021.100122

Fosca, M., Streza, A., Antoniac, I. V., Vadalà, G. & Rau, J. V. (2023). Ion-doped calcium phosphate-based coatings with antibacterial properties. J. Funct. Biomater., 14, No. 5, 250. https://doi.org/10.3390/jfb14050250

Madupalli, H., Pavan, B. & Tecklenburg, M. M. J. (2017). Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. J. Solid State Chem., 255, pp. 27-35. https://doi.org/10.1016/j.jssc.2017.07.025

Wong, S. L., Drouet, C. & Deymier, A. (2023). Carbonate environment changes with Na or K substitution in biomimetic apatites. Materialia, 29, 101795. https://doi.org/10.1016/j.mtla.2023.101795

Bigi, A., Boanini, E. & Gazzano, M. (2016). 7 — Ion substitution in biological and synthetic apatites. In Biomin- eralization and biomaterials: Fundamentals and applications (pp. 235-266). Elsevier. https://doi.org/10.1016/ B978-1-78242-338-6.00008-9

Predoi, D., Iconaru, S. L., Ciobanu, S. C., Predoi, S.-A., Buton, N., Megier, C. & Beuran, M. (2021). Development of iron-doped hydroxyapatite coatings. Coatings, 11, No. 2, 186. https://doi.org/10.3390/coatings11020186

Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst., A32, рр. 751-767. https://doi.org/10.1107/S0567739476001551

Low, H. R., Phonthammachai, N., Maignan, A., Stewart, G. A., Bastow, T. J., Ma, L. L. & White, T. J. (2008) The crystal chemistry of ferric oxyhydroxyapatite. Inorg. Chem., 47, рр. 11774-11782. https://doi.org/10.1021/ic801491t

Fleet, M. F., Lu, X. & King, P. L. (2004). Accommodation of the carbonate ion in apatite: An FTIR and X-ray structure study of crystals synthesized at 2—4 GPa. Amer. Mineral., 89, рр. 1422-1432. https://doi.org/10.2138/ am-2004-1009

Strutynska, N., Zatovsky, I., Slobodyanik, N., Malyshenko, A., Prylutskyy, Y., Prymak, O., Vorona, I., Ishchen- ko, S., Baran, N., Byeda, A. & Mischanchuk, A. (2015). Preparation, characterization, and thermal transformation of poorly crystalline sodium- and carbonate-substituted calcium phosphate. Eur. J. Inorg. Chem., 2015, pp. 622-629. https://doi.org/10.1002/ejic.201402761

Published

23.04.2024

How to Cite

Strutynska, N., Komaschenko, Y., & Slobodyanik, M. S. (2024). SYNTHESIS AND STUDY OF APATITE-RELATED IRONAND CARBONATE-CONTAINING CALCIUM PHOSPHATES. Reports of the National Academy of Sciences of Ukraine, (2), 44–50. https://doi.org/10.15407/dopovidi2024.02.044

Most read articles by the same author(s)