SYNTHESIS FEATURES OF SODIUM- AND ZINC-CONTAINING BIPHASIC CALCIUM PHOSPHATES

Authors

DOI:

https://doi.org/10.15407/dopovidi2023.04.068

Keywords:

apatite, whitlockite, zinc, biphasic calcium phosphates

Abstract

Biphasic calcium phosphates (based on (Са10(РО4)6(ОН)2 + β-Са3(РО4)2) containing of Zn2+ (2-9 wt %) were synthesized from aqueous solutions. The results indicate that increasing the amount of Zn2+ in the initial solution (by raising the molar ratio of Zn/Ca from 0.04 to 0.17) leads to an increase in the content of the phase based on
β-Са3(РО4)2) from 20 to 35 wt % in biphasic composite. The reduction in cell parameters for both phases suggests partial substitution of calcium by zinc cations, with a higher degree of substitution observed in the phase based on β-Са3(РО4)2). In the system Ca2+—Zn2+—Na+—PО43– the stabilization of β-Са3(РО4)2) type phase with amount to
90wt% in biphasic composite is achieved at increasing the zinc content and constant amount of sodium cation for the ratios Ca : Zn : Na : P = (10.3–x) : x : 0.4 : 7 (х = 0.4, 0.8 and 1.5). The established synthesis conditions for biphasic calcium phosphates containing different trace elements (Zn, Na) can be utilized for obtaining bioactive
materials for medical applications.

Downloads

Download data is not yet available.

References

Gomes, D. S., Santos, A. M. C., Neves, G. A. & Menezes, R. R. (2019). A brief review on hydroxyapatite production and use in biomedicine. Cerâmica, 65, рр. 282-302. https://doi.org/10.1590/0366- 69132019653742706

Hou, X., Zhang, L., Zhou, Z., Luo, X., Wang, T., Zhao, X., Lu, B., Chen, F. & Zheng, L. (2022). Calcium phosphate- based biomaterials for bone repair. J. Funct. Biomater., 13, 187. https://doi.org/10.3390/ jfb13040187

Lu, J., Yu, H. & Chen, C. (2018). Biological properties of calcium phosphate biomaterials for bone repair: a review. RSC Adv., 8, рр. 2015-2033. https://doi.org/10.1039/C7RA11278E

LeGeros, R. Z. (1991). Calcium phosphates in oral biology and medicine. Monographs in Oral Science (Vol. 15). Basel: Karger. https://doi.org/10.1159/isbn.978-3-318-04021-0

Kolmas, J., Groszyk, E. & Kwiatkowska-Różycka, D. (2014). Substituted hydroxyapatites with antibacterial properties. BioMed Res. Int., 178123. https://doi.org/10.1155/2014/178123

Strutynska, N., Livitska, O., Vovchenko, L., Zhuravkov, A., Prylutskyy, Y. & Slobodyanik, N. (2019). Novel nanostructured Na+, Cu2+(Zn2+), CO 2– HAP/alginate composite scaffold: fabrication, characterization and mechanical properties. Chemistry Select., 4, No. 39, рр. 11435-11440. https://doi.org/10.1002/slct.201902034

Sukhodub, L. B., Sukhodub, L. F., Kumeda, M. O., Prylutskyy, Yu. I., Pogorielov, M. V., Evstigneev, M. P., Kostjukov, V. V., Strutynska, N. Y., Vovchenko, L. L., Khrapatiy, S. V. & Ritter, U. (2020). Single-walled carbon nanotubes loaded hydroxyapatite–alginate beads with enhanced mechanical properties and sustained drug release ability. Prog. Biomater., 9, No. 1—2, рр. 1–14. https://doi.org/10.1007/s40204-020-00127-2

Grynyuk, I. I., Strutynska, N. Yu., Vasyliuk, O. M., Prylutska, S. V., Livitska, O. V. & Slobodyanik, M. S. (2021). Synthesis and antimicrobial properties of apatite-related Cu, Zn-doped calcium phosphate. Dopov. Nac. akad. nauk Ukr., No. 5, pp. 75-82 (in Ukrainian). https://doi.org/10.15407/dopovidi2021.05.075

Predoi, D., Iconaru, S. L., Predoi, M. V., Motelica-Heino, M., Guegan, R. & Buton, N. (2019). Evaluation of antibacterial activity of zinc-doped hydroxyapatite colloids and dispersion stability using ultrasounds. Nanomaterials (Basel), 9, No. 4, 515. https://doi.org/10.3390/nano9040515

Stanić, V., Dimitrijević, S., Antić-Stanković, J., Mitrić, M., Jokić, B., Plećaš, I. B. & Raičević, S. (2010). Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl. Surf. Sci., 256, No. 20, pp. 6083-6089. https://doi.org/10.1016/j.apsusc.2010.03.124

Strutynska, N., Zatovsky, I., Slobodyanik, N., Malyshenko, A., Prylutskyy, Y., Prymak, O., Vorona, I., Ishchenko, S., Baran, N., Byeda, A. & Mischanchuk, A. (2015). Preparation, characterization, and thermal transformation of poorly crystalline sodium- and carbonate-substituted calcium phosphate. Eur. J. Inorg. Chem., 2015, No. 4, pp. 622–629. https://doi.org/10.1002/ejic.201402761

Strutynska, N., Livitska, O., Prylutska, S., Yumyna, Y., Zelena, P., Skivka, L., Malyshenko, A., Vovchenko, L., Strelchuk, V., Prylutskyy, Y., Slobodyanik, N. & Ritter, U. (2020). New nanostructured apatite-type (Na+,Zn2+,CO 2-)-doped calcium phosphates: preparation, mechanical properties and antibacterial activity. J. Mol. Struct., 1222, 128932. https://doi.org/10.1016/j.molstruc.2020.128932

Strutynska, N. Yu., Slobodyanik, M. S., Titov, Y. O., Kraievska, I. A. & Khmarska, L. O. (2021). Formation of modified whitlockite-related calcium phosphates under conditions of coprecipitation from aqueous solutions. Voprosy khimii i khimicheskoi tekhnologii, No. 4, pp. 112-117 (in Ukrainian). https://doi.org/10.32434/0321- 4095-2021-137-4-112-117

Published

08.09.2023

How to Cite

Strutynska, N. Y., Slobodyanik, M. S., & Titov, Y. (2023). SYNTHESIS FEATURES OF SODIUM- AND ZINC-CONTAINING BIPHASIC CALCIUM PHOSPHATES. Reports of the National Academy of Sciences of Ukraine, (4), 68–75. https://doi.org/10.15407/dopovidi2023.04.068

Section

Chemistry

Most read articles by the same author(s)