Synthesis and antimicrobial properties of apatite- related Cu, Zn-doped calcium phosphate

Authors

DOI:

https://doi.org/10.15407/dopovidi2021.05.075

Keywords:

nanoparticles, apatite, zinc, copper, antimicrobial activity

Abstract

The nanoparticles (30-50 nm) of apatite-related calcium phosphates have been obtained by the coprecipitation method from an aqueous solution at molar ratios Са/Р = 1,67, CО32–/РО43–= 1 and (Cu2+, Zn2+) : Ca = 1 : 50 and a temperature of 25 0C. According to chemical analysis data, the prepared calcium phosphates contain cationic (Na+ (0.19-0.21 wt%),Cu2+ (0.42 wt%) and Zn2+ (0.36 wt%)) and anionic (C (0.98-1.02 wt%)) dopants. In the FTIR spectra of prepared calcium phosphates, the positions of vibration modes of carbonate groups confirmed the partial substitution of phosphate anion by carbonate group (B type) in the apatitetype structure. It was found that the doping of apatite-related calcium phosphates with Cu2+ and Zn2+ cations led to their increased inhibitory effect on gram-positive (Staphylococcus aureus) and gram-negative (Pseudomonas aeruginosa) microorganisms. Tenfold inhibition of S. aureus cell growth was observed at the addition of 5 mM of (Na+, Cu2+, Zn2+, CO32–)-containing calcium phosphate, while its noticeable effect on gram-negative bacteria (P. aeruginosa) was observed only at its amount of 10 mM. The obtained results indicate the prospects of using synthesized nanoparticles (Na+, Cu2+, Zn2+, CO32–)-containing calcium phosphate in the development of materials with antibacterial properties.

Downloads

Download data is not yet available.

Author Biography

I.I. Grynyuk, Taras Shevchenko National University of Kyiv

 

 

References

Gomes, D. S., Santos, A. M. C., Neves, G. A. & Menezes, R. R. (2019). A brief review on hydroxyapatite production and use in biomedicine. Cerâmica, 65, No. 374, pp. 282-302. https://doi.org/10.1590/0366-69132019653742706

Naga, S. M., Hassan, A. M., Awaad, M., Killinger, A., Gadow, R., Bernstein, A. & Sayed, M. (2020). Forsterite/ nano-biogenic hydroxyapatite composites for biomedical applications. J. Asian Ceram. Soc., 8, No. 2, рр. 373-386. https://doi.org/10.1080/21870764.2020.1743416

Yeo, I.-S. L. (2019). Modifications of dental implant surfaces at the micro- and nano-level for enhanced osseointegration. Materials (Basel), 13, No. 1, 89. https://doi.org/10.3390/ma13010089

Predoi, D., Iconaru, S. L., Predoi, M. V., Motelica-Heino, M., Guegan, R. & Buton, N. (2019). Evaluation of antibacterial activity of zinc-doped hydroxyapatite colloids and dispersion stability using ultrasounds. Nanomaterials (Basel), 9, No. 4, 515. https://doi.org/10.3390/nano9040515

Lu, S., McGough, M. A. P., Rogers, B. R., Wenke, J. C., Shimko, D. & Guelcher, S. A. (2017). Resorbable nanocomposites with bone-like strength and enhanced cellular activity. J. Mater. Chem. B, 5, No. 22, рр. 4198-4206. https://doi.org/10.1039/c7tb00657h

McGough, M. A. P., Boller, L. A., Groff, D. M., Schoenecker, J. G., Nyman, J. S., Wenke, J. C., Rhodes, C., Shimko, D., Duvall, C. L. & Guelcher, S. A. (2020). Nanocrystalline hydroxyapatite-poly(thioketal urethane) nanocomposites stimulate a combined intramembranous and endochondral ossification response in rabbits. ACS Biomater. Sci. Eng., 6, No. 1, рр. 564-574. https://doi.org/10.1021/acsbiomaterials.9b01378

Jin, S.-E. & Jin, H.-E. (2021). Antimicrobial activity of zinc oxide nano/microparticles and their combinations against pathogenic microorganisms for biomedical applications: from physicochemical characteristics to pharmacological aspects. Nanomaterials (Basel), 11, No. 2, 263. https://doi.org/10.3390/nano11020263

Kolmas, J., Groszyk, E. & Kwiatkowska-Różycka, D. (2014). Substituted hydroxyapatites with antibacterial properties. BioMed Res. Int., 2014, 178123. https://doi.org/10.1155/2014/178123

Ge, X. (2019). Antimicrobial biomaterials with non-antibiotic strategy. Biosurf. Biotribol., 5, No. 3, рр. 71-82. https://doi.org/10.1049/bsbt.2019.0010

Zhou, G., Li, Y., Xiao, W., Zhang, L., Zuo, Y., Xue, J. & Jansen, J. A. (2008). Synthesis, characterization, and antibacterial activities of a novel nanohydroxyapatite/zinc oxide complex. J. Biomed. Mater. Res., 85, No. 4, pp. 929-937. https://doi.org/10.1002/jbm.a.31527

Strutynska, N., Zatovsky, I., Slobodyanik, N., Malyshenko, A., Prylutskyy, Y., Prymak, O., Vorona, I., Ishchenko, S., Baran, N., Byeda A. & Mischanchuk, A. (2015). Preparation, characterization, and thermal transformation of poorly crystalline sodium- and carbonate-substituted calcium phosphate. Eur. J. Inorg. Chem., 2015, No. 4, pp. 622-629. https://doi.org/10.1002/ejic.201402761

Stewart, L. J., Ong, C.-L. Y., Zhang, M. M., Brouwer, S., McIntyre, L., Davies, M. R., Walker, M. J., McEwan, A. G., Waldron, K. J. & Djoko, K. Y. (2020). Role of glutathione in buffering excess intracellular copper in Streptococcus pyogenes. mBio, 11, No. 6, e02804-20. https://doi.org/10.1128/mBio.02804-20

Tsou, C.-C., Chiang-Ni, C., Lin, Y.-S., Chuang, W.-J., Lin, M.-T., Liu, C.-C. & Wu, J.-J. (2010). Oxidative stress and metal ions regulate a ferritin-like gene, dpr, in Streptococcus pyogenes. Int. J. Med. Microbiol., 300, No. 4, рр. 259-264. https://doi.org/10.1016/j.ijmm.2009.09.002

Stanić, V., Dimitrijević, S., Antić-Stanković, J., Mitrić, M., Jokić, B., Plećaš, I. B., & Raičević, S. (2010). Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl. Surf. Sci., 256, No. 20, рр. 6083-6089. https://doi.org/10.1016/j.apsusc.2010.03.124

Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan, H. & Mohamad, D. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett., 7, рр. 219-242. https://doi.org/10.1007/s40820-015-0040-x

Published

27.10.2021

How to Cite

Grynyuk, I., Strutynska, N., Vasyliuk, O., Prylutska, S., Livitska, O., & Slobodyanik, M. (2021). Synthesis and antimicrobial properties of apatite- related Cu, Zn-doped calcium phosphate. Reports of the National Academy of Sciences of Ukraine, (5), 75–82. https://doi.org/10.15407/dopovidi2021.05.075

Most read articles by the same author(s)

1 2 3 > >>