Bioclimatic factors and the course of the COVID-19 pandemic in Europe: the place of Ukraine
DOI:
https://doi.org/10.15407/dopovidi2021.04.086Keywords:
COVID-19, climate, ecological niche modeling, Europe, UkraineAbstract
The dependence of the COVID-19 pandemic on 8 of the 35 analyzed bioclimatic factors has been proven in Europe. Their combination objectively determines the spatial basis of the pandemic. The optimal conditions for the development of the pandemic are determined by two key parameters: the minimum temperature of the coldest week of the year in the interval from 6 to 10 °C and a constant level of seasonal humidity. The most suitable for the development of the pandemic are the territories of the Western Europe (indicators of fitness from 60 to 80 %). Central and Northern Europe are characterized by an average level of suitability (50-60 %). The lowest level in the Eastern Europe is about 50 %. The territory of Ukraine belongs to the average suitable. Therefore, given the low, as for most European countries, population density, any excessive manifestations of the pandemic should be explained only by the low efficiency of medical and organizational measures nationwide.
Downloads
References
Mezhzherin, S. V., Garbar, A. V., Garbar, D. A., Korshunova, E. D., Morozov-Leonov, S. Yu., Rostov skaya, O. V., Sobolenko, L. Yu. , Vasilieva, L. A. & Yanovich, L. N. (2009, November). “Genetic winds” of the Palaearc tic: application of the concept to the territory of Ukraine. Program and abstracts of reports of the international scientific conference Modern views on the evolution of the organic world (p. 43), Kyiv.
Zaitchik, B. F., Sweijd, N., Shumake-Guillemot, J., Morse, A., Gordon, C., Marty, A., Trtanj, J., Luterbacher, J., Botai, J., Behera, S., Lu, Y., Olwoch, J., Takahashi, K., Stowell, J.D. & Rodó, X. (2020). A framework for research linking weather, climate and COVID-19. Nat. Commun., 11, 5730. https://doi.org/10.1038/ s41467-020-19546-7
Mecenas, P., Bastos, R. T. R. M., Vallinoto, A. C. R. & Normando, D. (2020). Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLoS ONE, 15, No. 9, e0238339. https://doi. org/10.1371/journal.pone.0238339
Pani, S. K., Lin, N.-H. & RavindraBabu, S. (2020). Association of COVID-19 pandemic with meteorological parameters over Singapore. Sci. Total Environ., 740, 140112. https://doi.org/10.1016/j.scitotenv.2020.140112
Islam, A. R. M. T., Hasanuzzaman, M., Shammi, M., Salam, R., Bodrud-Doza, M., Rahman, M. M., Mannan, A. & Huq, S. (2021). Are meteorological factors enhancing COVID-19 transmission in Bangladesh? Novel findings from a compound Poisson generalized linear modeling approach. Environ. Sci. Pollut. Res., 28, pp. 11245–11258. https://doi.org/10.1007/s11356-020-11273-2
Sajadi, M. M., Habibzadeh, P., Vintzileos, A., Shokouhi. S., Miralles-Wilhelm, F. & Amoroso, A. (2020). Temperature, humidity, and latitude analysis to estimate potential spread and seasonality of coronavirus disease 2019 (COVID-19). JAMA Netw. Open., 3, No. 6, e2011834. https://doi.org/10.1001/jamanetworkopen. 2020.11834
Paraskevis, D., Kostaki, E. G., Alygizakis, N., Thomaidis, N. S., Cartalis, C., Tsiodras, S. & Dimopoulos, M. A. (2020). A review of the impact of weather and climate variables to COVID-19: In the absence of public health measures high temperatures cannot probably mitigate outbreaks. Sci.Total Environ., 768, 144578. https://doi.org/10.1016/j.scitotenv.2020.144578
Wu, Y., Jing, W., Liu, J., Ma, Q., Yuan, J., Wang, Y., Du, M. & Liu, M. (2020). Effects of temperature and humidity on the daily new cases and new deaths of COVID-19 in 166 countries. Sci. Total Environ., 729, 139051. https://doi.org/10.1016/j.scitotenv.2020.139051
Chin, A. W. H., Chu, J. T. S., Perera, M. R. A., Hui, K. P. Y., Yen, H.-L., Chan, M. C. W., Peiris, M. & Poon, L. L. M. (2020). Stability of SARS-CoV-2 in different environmental conditions. medRxiv, 2020.03.15.20036673. https://doi.org/10.1101/2020.03.15.20036673
Araújo, M. B. & Naimi, B. (2020). Spread of SARS-CoV-2 Coronavirus likely to be constrained by climate. medRxiv, 2020.03.12.20034728. https://doi.org/10.1101/2020.03.12.20034728
Murray, K. A. Olivero, J., Roche, B., Tiedt, S. & Guégan, J.-F. (2018). Pathogeography: leveraging the biogeography of human infectious diseases for global health management. Ecography, 41, No. 9, pp. 1411- 1427. https://doi.org/10.1111/ecog.03625
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V. & Böhner, J. (2015). System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev., 8, pp. 1991- 2007. https://doi.org/10.5194/gmd-8-1991-2015
Carlson, C. J. (2020). embarcadero: Species distribution modelling with Bayesian additive regression trees in R. Methods Ecol. Evol., 11, No. 7, pp. 850-858. https://doi.org/10.1111/2041-210X.13389
Kriticos, D. J., Webber, B. L., Leriche, A., Ota, N., Macadam, I., Bathols, J. & Scott, J. K. (2012). CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol., 3, No. 1, pp. 53-64. https://doi.org/10.1111/j.2041-210X.2011.00134.x
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron., 4, No. 1, Art. 4, 9 pp.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.