Bioclimatic modeling of the European distribution of the invasive Asian tiger mosquito, Aedes (Stegomyia) albopictus (Skuse, 1895), with special reference to Ukraine
DOI:
https://doi.org/10.15407/dopovidi2020.03.088Keywords:
Aedes albopictus, bioclimatic modeling, UkraineAbstract
Due to the spread of Aedes albopictus to many countries around the globe, which is an important mosquito vector for the transmission of many viral pathogens and capable of hosting the Zika virus, it is important to determine the potential suitable bioclimatic range in Ukraine. Bioclimatic modelling suggests that, under current climate conditions, the vector species has varying chances in the near term to invade a number of regions in Ukraine, especially in the south and west of the country: particularly, Crimea, the southern portion of the Odesa region, and Transcarpathian one and, to a less extent, the Precarpathian region. Under the risk of invasion by the mosquito vector, are as well coastal areas of the Black and Azov seas.
Downloads
References
Benedict, M. Q., Levine, R. S., Hawley, W. A. & Lounibos, L. P. (2007). Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis., 7, No. 1, pp. 76-85. Doi: https://doi.org/10.1089/vbz.2006.0562
Hochedez, P., Jaureguiberry, S., Debruyne, M., Bossi, P., Hausfater, P., Brucker, G., Bricaire, F. & Caumes, E. (2006). Chikungunya infection in travelers. Emerg. Infect. Dis., 12, No. 10, pp. 1565-1567. Doi: https://doi.org/10.3201/eid1210.060495
Grard, G., Caron, M., Mombo, I. M., Nkoghe, D., Ondo, S. M., Jiolle, D., Fontenille, D., Paupy, C., Leroy, E. M. (2014). Zika Virus in Gabon (Central Africa) — 2007: A new threat from Aedes albopictus? PLOS Negl. Trop. Dis., 8, No. 2, e2681. Doi: https://doi.org/10.1371/journal.pntd.0002681
Reinhold, J. M., Lazzari, C. R. & Lahondère, C. (2018). Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: a review. Insects, 9, No. 4, E158. Doi: https://doi.org/10.3390/insects9040158
Akiner, M. M., Demirci, B., Babuadze, G., Robert, V. & Schaffner, F. (2016). Spread of the invasive mosquitoes Aedes aegypti and Aedes albopictus in the Black Sea Region increases risk of Chikungunya, Dengue, and Zika outbreaks in Europe. PLoS Negl. Trop. Dis., 10, No. 4, e0004664. Doi: https://doi.org/10.1371/journal.pntd.0004664
Kutateladze, T., Zangaladze, E., Dolidze, N., Mamatsashvili, T., Tskhvaradze, L., Andrews, E. S. & Haddow, A. D. (2016). First record of Aedes albopictus in Georgia and updated checklist of reported species. J. Am. Mosq. Control. Assoc., 32, No. 3, pp. 230-233. Doi: https://doi.org/10.2987/16-6574.1
Fedorova, M. V., Shvets, O. G., Yunicheva, Y. V., Medyanik, I. M., Ryabova, T. E. & Otstavnova, A. D. (2018). Dissemination of invasive mosquito species, Aedes (Stegomyia) aegypti (L., 1762) and Aedes (Stegomyia) albopictus (Skuse, 1895) in the south of Krasnodar Region, Russia. Problems of Particularly Dangerous Infections, 2, pp. 101-105. Doi: https://doi.org/10.21055/0370-1069-2018-2-101-105 (in Russian).
Kraemer, M. U., Sinka, M. E., Duda, K. A., Mylne, A., Shearer, F. M., Brady, O. J., Messina, J. P., Barker, C. M., Moore, C. G., Carvalho, R. G., Coelho, G. E., Van Bortel, W., Hendrickx, G., Schaffner, F., Wint, G. R., Elyazar, I. R., Teng, H. J. & Hay, S. I. (2015). The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data, 2, 150035. Doi: https://doi.org/10.1038/sdata.2015.35
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38, No. 5, pp. 541-545. Doi: https://doi.org/10.1111/ecog.01132
Naimi, B. & Araújo, M. B. (2016). sdm: a reproducible and extensible R platform for species distribution modelling. Ecography, 39, No. 4, pp. 368-375. Doi: https://doi.org/10.1111/ecog.01881
Title, P. O. & Bemmels, J. B. (2018). ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography, 41, No. 2, pp. 291-307. Doi: https://doi.org/10.1111/ecog.02880
Caminade, C., Medlock, J. M., Ducheyne, E., McIntyre, K. M., Leach, S., Baylis, M. & Morse A. P. (2012). Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J. R. Soc. Interface, 9, Iss. 75, pp. 2708-2717. Doi: https://doi.org/10.1098/rsif.2012.0138
Alto, B. W. & Juliano S. A. (2001). Temperature effects on the dynamics of Aedes albopictus (Diptera: Culicidae) populations in the laboratory. J. Med. Entomol., 38, No. 4, pp. 548-556. Doi: https://doi.org/10.1603/0022-2585-38.4.548
O’Brien, E. M. (2006). Biological relativity to water-energy dynamics. J. Biogeogr., 33, Iss. 11, pp. 1868-1888. Doi: https://doi.org/10.1111/j.1365-2699.2006.01534.x
Dieng, H., Saifur, R. G., Hassan, A. A., Salmah, M. R., Boots, M., Satho, T., Jaal, Z. & AbuBakar, S. (2010). Indoor-breeding of Aedes albopictus in northern peninsular Malaysia and its potential epidemiological implications. PloS One, 5, No. 7, e11790. Doi: https://doi.org/10.1371/journal.pone.0011790
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.