Bioclimatic modeling of the European distribution of the invasive Asian tiger mosquito, Aedes (Stegomyia) albopictus (Skuse, 1895), with special reference to Ukraine

Authors

  • I.I Kozynenko I.I. Schmalhausen Institute of Zoology
  • V.M. Tytar I.I. Schmalhausen Institute of Zoology

DOI:

https://doi.org/10.15407/dopovidi2020.03.088

Keywords:

Aedes albopictus, bioclimatic modeling, Ukraine

Abstract

Due to the spread of Aedes albopictus to many countries around the globe, which is an important mosquito vector for the transmission of many viral pathogens and capable of hosting the Zika virus, it is important to determine the potential suitable bioclimatic range in Ukraine. Bioclimatic modelling suggests that, under current climate conditions, the vector species has varying chances in the near term to invade a number of regions in Ukraine, especially in the south and west of the country: particularly, Crimea, the southern portion of the Odesa region, and Transcarpathian one and, to a less extent, the Precarpathian region. Under the risk of invasion by the mosquito vector, are as well coastal areas of the Black and Azov seas.

Downloads

Download data is not yet available.

References

Benedict, M. Q., Levine, R. S., Hawley, W. A. & Lounibos, L. P. (2007). Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis., 7, No. 1, pp. 76-85. Doi: https://doi.org/10.1089/vbz.2006.0562

Hochedez, P., Jaureguiberry, S., Debruyne, M., Bossi, P., Hausfater, P., Brucker, G., Bricaire, F. & Caumes, E. (2006). Chikungunya infection in travelers. Emerg. Infect. Dis., 12, No. 10, pp. 1565-1567. Doi: https://doi.org/10.3201/eid1210.060495

Grard, G., Caron, M., Mombo, I. M., Nkoghe, D., Ondo, S. M., Jiolle, D., Fontenille, D., Paupy, C., Leroy, E. M. (2014). Zika Virus in Gabon (Central Africa) — 2007: A new threat from Aedes albopictus? PLOS Negl. Trop. Dis., 8, No. 2, e2681. Doi: https://doi.org/10.1371/journal.pntd.0002681

Reinhold, J. M., Lazzari, C. R. & Lahondère, C. (2018). Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: a review. Insects, 9, No. 4, E158. Doi: https://doi.org/10.3390/insects9040158

Akiner, M. M., Demirci, B., Babuadze, G., Robert, V. & Schaffner, F. (2016). Spread of the invasive mosquitoes Aedes aegypti and Aedes albopictus in the Black Sea Region increases risk of Chikungunya, Dengue, and Zika outbreaks in Europe. PLoS Negl. Trop. Dis., 10, No. 4, e0004664. Doi: https://doi.org/10.1371/journal.pntd.0004664

Kutateladze, T., Zangaladze, E., Dolidze, N., Mamatsashvili, T., Tskhvaradze, L., Andrews, E. S. & Haddow, A. D. (2016). First record of Aedes albopictus in Georgia and updated checklist of reported species. J. Am. Mosq. Control. Assoc., 32, No. 3, pp. 230-233. Doi: https://doi.org/10.2987/16-6574.1

Fedorova, M. V., Shvets, O. G., Yunicheva, Y. V., Medyanik, I. M., Ryabova, T. E. & Otstavnova, A. D. (2018). Dissemination of invasive mosquito species, Aedes (Stegomyia) aegypti (L., 1762) and Aedes (Stegomyia) albopictus (Skuse, 1895) in the south of Krasnodar Region, Russia. Problems of Particularly Dangerous Infections, 2, pp. 101-105. Doi: https://doi.org/10.21055/0370-1069-2018-2-101-105 (in Russian).

Kraemer, M. U., Sinka, M. E., Duda, K. A., Mylne, A., Shearer, F. M., Brady, O. J., Messina, J. P., Barker, C. M., Moore, C. G., Carvalho, R. G., Coelho, G. E., Van Bortel, W., Hendrickx, G., Schaffner, F., Wint, G. R., Elyazar, I. R., Teng, H. J. & Hay, S. I. (2015). The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data, 2, 150035. Doi: https://doi.org/10.1038/sdata.2015.35

Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38, No. 5, pp. 541-545. Doi: https://doi.org/10.1111/ecog.01132

Naimi, B. & Araújo, M. B. (2016). sdm: a reproducible and extensible R platform for species distribution modelling. Ecography, 39, No. 4, pp. 368-375. Doi: https://doi.org/10.1111/ecog.01881

Title, P. O. & Bemmels, J. B. (2018). ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography, 41, No. 2, pp. 291-307. Doi: https://doi.org/10.1111/ecog.02880

Caminade, C., Medlock, J. M., Ducheyne, E., McIntyre, K. M., Leach, S., Baylis, M. & Morse A. P. (2012). Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J. R. Soc. Interface, 9, Iss. 75, pp. 2708-2717. Doi: https://doi.org/10.1098/rsif.2012.0138

Alto, B. W. & Juliano S. A. (2001). Temperature effects on the dynamics of Aedes albopictus (Diptera: Culicidae) populations in the laboratory. J. Med. Entomol., 38, No. 4, pp. 548-556. Doi: https://doi.org/10.1603/0022-2585-38.4.548

O’Brien, E. M. (2006). Biological relativity to water-energy dynamics. J. Biogeogr., 33, Iss. 11, pp. 1868-1888. Doi: https://doi.org/10.1111/j.1365-2699.2006.01534.x

Dieng, H., Saifur, R. G., Hassan, A. A., Salmah, M. R., Boots, M., Satho, T., Jaal, Z. & AbuBakar, S. (2010). Indoor-breeding of Aedes albopictus in northern peninsular Malaysia and its potential epidemiological implications. PloS One, 5, No. 7, e11790. Doi: https://doi.org/10.1371/journal.pone.0011790

Downloads

Published

28.03.2024

How to Cite

Kozynenko, I. ., & Tytar, V. . (2024). Bioclimatic modeling of the European distribution of the invasive Asian tiger mosquito, Aedes (Stegomyia) albopictus (Skuse, 1895), with special reference to Ukraine . Reports of the National Academy of Sciences of Ukraine, (3), 88–93. https://doi.org/10.15407/dopovidi2020.03.088