Autophagosome formation and transcriptional activity of atg8 genes in Arabidopsis root cells during the development of autophagy under microgravity conditions

Authors

  • R.Yu. Shadrina Institute of Food Biotechnology and Genomics
  • I.I. Horiunova Institute of Food Biotechnology and Genomics
  • Ya.B. Blume Institute of Food Biotechnology and Genomics
  • A.I. Yemets Institute of Food Biotechnology and Genomics

DOI:

https://doi.org/10.15407/dopovidi2020.09.077

Keywords:

Arabidopsis thaliana, atg8 genes, autophagosome, autophagy, clinostatting, microgravity

Abstract

Morphological and cytological analyses of Arabidopsis thaliana seedlings roots growing under conditions mimicking a microgravity has been performed. Moreover, we assessed the process of autophagy induction in cells upon such conditions. Here, we report significant changes in the root development and the enhanced autophagosome formation in epidermal cells in the transitional zone on the 6th day of cultivation upon conditions on a rotating clinostat, as well as their gradual decrease on the 9th and 12th days, respectively, in comparison to control plants. These changes may suggest the induction of the adaptive process to the microgravity conditions. Family of atg8 genes (atg8a, atg8b, atg8c, atg8d, atg8e, atg8f, atg8g, atg8h, and atg8i) are involved in the implementation of initial stages of autophagy. Transcriptional analysis of atg8 isoforms indicates clear time-dependent expression changes (6-12 days of microgravity) in the majority of such genes. In particular, the increased expression levels (atg8a, atg8c, atg8d) on the 6th day, a gradual decrease on the 9th day, and a significant decrease after 12 days of growing on a clinostat have been observed in comparison to control. Our results de monstrate the significantly elevated expression of atg8e, atg8f, and atg8i genes on the 6th, 9th, and 2th days. The obtained data suggest that studied atg8 genes are specifically involved in autophagy induced by microgravity in Arabidopsis thaliana.

Downloads

Download data is not yet available.

References

Chen, Q., Shinozaki, D., Luo, J., Pottier, M., Havé, M., Marmagne, A., Reisdorf-Cren, M., Chardon, F., Thomine, S., Yoshimoto, K. & Masclaux-Daubresse, C. (2019). Autophagy and nutrients management in plants. Cells, 8, No. 11. 1426. https://doi.org/10.3390/cells8111426

Masclaux-Daubresse, C., Chen, Q. & Havé, M. (2017). Regulation of nutrient recycling via autophagy Curr. Opin. Plant Biol., 39, рр. 8-17. https://doi.org/10.1016/j.pbi.2017.05.001

Tang, J. & Bassham, D. C. (2018). Autophagy in crop plants: What’s new beyond Arabidopsis? Open Biol., 8, No. 12. 180162. https://doi.org/10.1098/rsob.180162

Olenieva, V. D., Lytvyn, D. I., Yemets, A. I. & Blume, Ya. B. (2018). Influence of UV-B on expression profiles of genes involved in the development of autophagy by means of microtubules. Dopov. Nac. akad. nauk Ukr., No. 1, рр. 100-109. https://doi.org/10.15407/dopovidi2018.01.100

Olenieva, V., Lytvyn, D., Yemets, A., Bergounioux, C. & Blume, Y. (2019). Tubulin acetylation accompanies autophagy development induced by different abiotic stimuli in Arabidopsis thaliana. Cell Biol. Int., 43, No. 9, рр. 1056-1064. https://doi.org/10.1002/cbin.10843

Shadrina, R. Yu., Yemets, A. I. & Blume, Ya. B. (2019). Autophagy development as an adaptive response to microgravity conditions in Arabidopsis thaliana. Faktory eksperimental’noi evolucii organizmiv, 25, рр. 327-332. https://doi.org/10.7124/FEEO.v25.1186

Rao, X., Huang, X., Zhou, Z. & Lin, X. (2013). An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinforma. Biomath., 3, No. 3, рр. 71-85.

Chazotte, B. (2011). Labeling lysosomes in live cells with LysoTracker. Cold Spring Harbor Protocols, 2, pdb.prot5571. https://doi.org/10.1101/pdb.prot5571

Yang, X. & Bassham, D. C. (2015). New insight into the mechanism and function of autophagy in plant cells. Int. Rev. Cell Mol. Biol., 320, рр. 1-40. https://doi.org/10.1016/bs.ircmb.2015.07.005

Doelling, J. H., Walker, J. M., Friedman, E. M., Thompson, A. R. & Vierstra, R. D. (2002). The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J. Biol. Chem., 277, No. 36, рр. 33105-33114. https://doi.org/10.1074/jbc.M204630200

Olenieva, V. D., Lytvyn, D. I., Yemets, A. I. & Blume, Ya. B. (2017). Influence of sucrose starvation, osmotic and salt stresses on expression profiles of genes involved in the development of autophagy by means of microtubules. Visnik Ukrains’kogo tovaristva genetikiv i selekcioneriv, 15, No. 2, pp. 174-180. https://doi.org/10.7124/visnyk.utgis.15.2.876

Chen, Q., Soulay, F., Saudemont, B., Elmayan, T., Marmagne, A. & Masclaux-Daubresse, C.L. (2019). Overexpression of ATG8 in Arabidopsis stimulates autophagic activity and increases nitrogen remobilization efficiency and grain filling. Plant Cell Physiol., 60, No. 2, рр. 343-352. https://doi.org/10.1093/pcp/pcy214

Published

28.03.2024

How to Cite

Shadrina, R. ., Horiunova, I. ., Blume, Y. ., & Yemets, A. . (2024). Autophagosome formation and transcriptional activity of atg8 genes in Arabidopsis root cells during the development of autophagy under microgravity conditions . Reports of the National Academy of Sciences of Ukraine, (9), 77–85. https://doi.org/10.15407/dopovidi2020.09.077