The loss of stability of a rotating resilent plastic plane disk with decreasing radius
DOI:
https://doi.org/10.15407/dopovidi2014.02.056Keywords:
loss of stability, resilient plastic plane diskAbstract
The dependence of the critical speed of rotation on the variable radius of a contour circle is determined by means of the small parameter method. Proceeding from the Saint-Venant condition of fluidity, we obtain the characteristic equation for the critical radius of a plastic zone in the first approximation. The values of the critical angular speed of rotation for various parameters of the system are determined numerically.
Downloads
References
Ivlev D. D. Izv. AN USSR. OTN, 1957, No. 1: 141–144 (in Russian).
Ershov L. V., Ivlev D. D. Izv. AN USSR. OTN, 1958, No. 1: 124-125 (in Russian).
Ivlev D. D., Ershov L. V. The perturbation method in the theory of an elastoplastic body. Moscow: Nauka, 1978 (in Russian).
Guz A. N., Nemish Yu. N. Method of perturbation of the shape of the boundary in the mechanics of continuous media. Kyiv: Vyshcha shkola, 1989 (in Russian).
Guz A. N., Babich I. Yu. Three-dimensional theory of stability of deformable bodies. Kyiv: Nauk. dumka, 1985 (in Russian).
Sokolovsky V. V. Theory of plasticity. Moscow: Vyshaia shkola, 1969 (in Russian).
Bitsenko K. B., Grammel R. Technical Dynamics. Vol. 2. Moscow; Leningrad: GITTL, 1952 (in Russian).
Bitsenko K. B., Grammel R. Technical Dynamics. Vol. 1. Moscow; Leningrad: GITTL, 1950 (in Russian).
Lila D. M., Martynyuk A. A. Dopov. Nac. akad. nauk Ukr., 2011, No. 1: 44–51 (in Russian).
Lila D. M. Dopov. Nac. akad. nauk Ukr., 2011, No. 2: 49–53 (in Russian).
Lila D. M., Martynyuk A. A. Int. Appl. Mech., 2012, 48, No. 2: 224–233. https://doi.org/10.1007/s10778-012-0518-x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.