Convergence of inertial hybrid splitting algorithms

Authors

  • V.V. Semenov Taras Shevchenko National University of Kiev

DOI:

https://doi.org/10.15407/dopovidi2018.12.030

Keywords:

Hilbert space, hybrid algorithm, inertial method, maximal monotone operator, operator inclusion problem, strong convergence, Tseng algorithm

Abstract

Two new algorithms for solving the operator inclusion problems with maximal monotone operators acting in a Hilbert space are proposed. Algorithms are based on the inertial extrapolation and three well-known methods: Tseng forward-backward splitting algorithm and two hybrid algorithms for the approximation of fixed points of nonexpansive operators. Theorems on the strong convergence of the sequences generated by the algorithms are proved.

Downloads

Download data is not yet available.

References

Bauschke, H. H. & Combettes, P. L. (2011). Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Berlin etc.: Springer. doi: https://doi.org/10.1007/978-1-4419-9467-7

Tseng, P. (2000). A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control and Optimization, 38, pp. 431-446. doi: https://doi.org/10.1137/S0363012998338806

Semenov, V. V. (2014). Hybrid Splitting Methods for the System of Operator Inclusions with Monotone Operators. Cybernetics and Systems Analysis, 50, pp. 741-749. doi: https://doi.org/10.1007/s10559-014-9664-y

Semenov, V. V. (2014). A Strongly Convergent Splitting Method for Systems of Operator Inclusions with Monotone Operators. J. Automation and Information Sciences, 46, No. 5, pp. 45-56. doi: https://doi.org/10.1615/JAutomatInfScien.v46.i5.40

Alvarez, F. & Attouch, H. (2001). An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal., 9, pp. 3-11. doi: https://doi.org/10.1023/A:1011253113155

Attouch, H., Chbani, Z. & Riahi, H. (2018). Combining fast inertial dynamics for convex optimization with Tikhonov regularization. J. Math. Anal. Appl., 457, pp. 1065-1094. doi: https://doi.org/10.1016/j.jmaa.2016.12.017

Dong, Q. L., Lu, Y. Y. & Yang, J. (2016). The extragradient algorithm with inertial effects for solving the variational inequality. Optimization, 65, pp. 2217-2226. doi: https://doi.org/10.1080/02331934.2016.1239266

Dong, Q. L., Yuan, H. B., Cho, Y. J. & Rassias, Th. M. (2018). Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings. Optim. Lett., 12, No. 1, pp. 87-102. doi: https://doi.org/10.1007/s11590-016-1102-9

Lorenz, D. & Pock, T. (2015). An inertial forward-backward algorithm for monotone inclusions. J. Math. Imaging and Vision, 51, pp. 311-325. doi: https://doi.org/10.1007/s10851-014-0523-2

Nakajo, K. & Takahashi, W. (2003). Strong convergence theorems for nonexpansive mappings and no nexpansive semigroups. J. Math. Anal. Appl., 279, pp. 372-379. doi: https://doi.org/10.1016/S0022-247X(02)00458-4

Takahashi, W., Takeuchi, Y., & Kubota, R. (2008). Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl., 341, pp. 276-286. doi: https://doi.org/10.1016/j.jmaa.2007.09.062

Verlan, D. A., Semenov, V. V. & Chabak, L. M. (2015). A Strongly Convergent Modified Extragradient Method for Variational Inequalities with Non-Lipschitz Operators. J. Automation and Information Sciences, 47, No. 7, pp. 31-46. doi: https://doi.org/10.1615/JAutomatInfScien.v47.i7.40

Denisov, S. V., Semenov, V. V. & Chabak, L. M. (2015). Convergence of the Modified Extragradient Method for Variational Inequalities with Non-Lipschitz Operators. Cybernetics and Systems Analysis, 51, pp. 757-765. doi: https://doi.org/10.1007/s10559-015-9768-z

Published

20.05.2024

How to Cite

Semenov, V. (2024). Convergence of inertial hybrid splitting algorithms . Reports of the National Academy of Sciences of Ukraine, (12), 30–36. https://doi.org/10.15407/dopovidi2018.12.030

Issue

Section

Information Science and Cybernetics

Most read articles by the same author(s)