Bilevel optimization of a distribution of interbudget transfers within given limitations

Authors

  • V.V. Semenov V.М. Glushkov Institute of Cybernetics of the NAS of Ukraine, Kyiv

DOI:

https://doi.org/10.15407/dopovidi2019.10.011

Keywords:

bilevel optimization problem, Boolean variables, integer optimization, local algorithm, parametric programming

Abstract

The problems of optimal distributing of transfers are defined and investigated within given budget limitations with the purpose of maximization of the social welfare in accordance with predefined criteria. The mathematical model is presented as a bilevel optimization problem, containing a linear problem of integer optimization at the bottom level, whose optimal solution is used for setting a feasible region of a bilevel problem. The optimistic and pessimistic problem definitions on the optimal distributing of transfers are considered. For the approximate solution of the optimistic version of a bilevel problem on the basis of the method of directing neighborhoods, the algorithm of finding the solutions for a parametric problem of integer programming of a lower level is proposed. The integer programming problem of a higher level with Boolean variables is solved on the basis of local algorithms.

Downloads

Download data is not yet available.

References

Sergienko, I. V. & Semenov, V. V. (2013). Modeling the System of Intergovernmental Transfers in Ukraine. J. Automation and Information Sciences, 45, No. 8, pp. 1-10. doi: https://doi.org/10.1615/JAutomatInfScien.v45.i8.10

Semenov, V. V. (2013). Modeling the impact of Ukraine’s interbudget transfers on financing the social infrastructure. Dopov. Nac. acad. nauk Ukr., No. 10, pp. 47-53 (in Ukrainian)

Sergienko, I. V. (2014). Topical directions of informatics. In memory of V.M. Glushkov. New York ets.: Springer. 286 p. doi: https://doi.org/10.1007/978-1-4939-0476-1

Semenov, V. V. (2008). Economic and statistical models and methods of research of social processes: are inequality, poverty, polarization. Kyiv: EPD PUCCU. Vol. 1, 238 p., Vol. 2, 270 p. (in Ukrainian).

Sergienko, I. V., Kozeratska, L. & Lebedeva, T. T. (1995). Research of stability and parametric analysis of discrete optimization problems. Kyiv: Naukova Dumka (in Russian).

Sergienko, I. V. & Shilo, V. P. (2003). Tasks of Discrete Optimization: Problems, Methods of Solution and Research. Kyiv: Naukova Dumka (in Russian).

Beyko, I. V., Zinko, P. M. & Nakonechnyi, O. G. (2011). Problems, methods and algorithms of optimiza tion. Rivne: EPD NUWEUN (in Ukrainian).

Вen-Ayed, O. (1993). Bilevel linear programming. Comput. Oper. Res., 20. No. 5, pp. 485-501. doi: https://doi.org/10.1016/0305-0548(93)90013-9

Semenova, N. V. (2007). Methods of searching for guaranteeing and optimistic solutions to integer optimization problems under uncertainty. Cybernetics and Systems Analysis, 43. No. 1, pp. 85-93 (in Russian). doi: https://doi.org/10.1007/s10559-007-0028-8

Dempe, S. (2002). Foundations of Bilevel Programming. Dordrecht: Kluwer Acad. Publ.

Sinha, A., Malo, P. & Deb, K. (2018). A Review on Bilevel Optimization: From Classical to Evolutionary Approaches and Applications. IEEE Transactions on Evolutionary Computation, 22. No. 2, pp. 278-295. doi: https://doi.org/10.1109/TEVC.2017.2712906

Vicente, L., Savard, G. & Judice, J. (1996). Discrete linear bilevel programming problem. J. optimization theory and applications, 89. No. 3, pp. 597-614. doi: https://doi.org/10.1007/BF02275351

Published

24.04.2024

How to Cite

Semenov, V. (2024). Bilevel optimization of a distribution of interbudget transfers within given limitations . Reports of the National Academy of Sciences of Ukraine, (10), 11–20. https://doi.org/10.15407/dopovidi2019.10.011

Issue

Section

Information Science and Cybernetics

Most read articles by the same author(s)