Role of calcium in the response of cellular metabolism to epibrassinolide in transgenic tobacco cax1 plants
DOI:
https://doi.org/10.15407/dopovidi2015.09.105Keywords:
24-epibrassinolide, ascorbate peroxidase, calcium, CAX1 (Cation Exchanger 1), glutathione reductase, NAD, NADP, NADPH, Nicotiana tabacum, superoxide dismutaseAbstract
The role of calcium was investigated in the response of cellular metabolism to 24-epibrassinolide (EBL) in transgenic plants of Nicotiana tabacum ecotype KY-160 and tobacco cax1 transgenic plants created from them that express a coding part of H+/Ca2+ vacuolar antiporter CAX1 of Arabidopsis. It was established that the EBL activates the antioxidant system (superoxide dismutase, ascorbate peroxidase, and glutathione reductase) and increases the levels of superoxide anion radical and reduced glutathione. It was shown that a disturbance of intracellular calcium homeostasis reduces plant responses to exogenous EBL. Reduction of the enzymatic activity of the ascorbateglutathione cycle — ascorbate peroxidase and glutathione reductase — was observed in response to glucose-6-phosphate dehydrogenase inhibitor.
Downloads
References
Kagale S., Divi U. K., Krochko J. E., Keller W. A., Krishna P. Planta, 2007, 225, Iss. 2: 353–364.
Yan J., Guan L., Sun Y., Zhu Y., Liu L., Lu R., Jiang M., Tan M., Zhang A. Plant Cell Physiol., 2015, 56, No 5: 883-896. https://doi.org/10.1093/pcp/pcv014
Zhao Y., Qi Z., Berkowitz G. A. Plant Physiol., 2013, 163, No 2: 555-565. https://doi.org/10.1104/pp.112.213371
Straltsova D., Chykun P., Subramaniam S., Sosan A., Kolbanov D., Sokolik A., Demidchik V. Steroids, 2015, 97: 98-106. doi:10.1016/j.steroids.2014.10.008. https://doi.org/10.1016/j.steroids.2014.10.008
Hirschi K. D. Plant Cell., 1999, 11, Iss. 11: 2113–2122. https://doi.org/10.1105/tpc.11.11.2113
Able A. J., Guest D. I., Sutherland M. W. Plant Physiol., 1998, 117, No 2: 491–499. https://doi.org/10.1104/pp.117.2.491
Boveris A., Chance B. Biochem. J., 1973, 134, Iss. 3: 707–716. https://doi.org/10.1042/bj1340707
Griffith O. W. Anal. Biochem., 1980, 106, Iss. 1: 207–212. https://doi.org/10.1016/0003-2697(80)90139-6
Xia X.-J., Zhou Y.-H., Shi K., Zhou J., Foyer C. H., Yu. J.-Q. J. Exp. Bot., 2015, https://doi.org/10.1093/jxb/erv089
Foyer C. H., Noctor G. Plant Physiology, 2011, 155, No 1: 2–18. https://doi.org/10.1104/pp.110.167569
Karita E., Yamakawa H., Mitsuhara I., Kuchitsu K., Ohashi Y. Plant Cell Physiol., 2004, 45, No 10: 1371–1379. https://doi.org/10.1093/pcp/pch158
Gahan P. B., Ishkhanes S. T., Crevecoeur M., Greppin H. Cell Biochem. Funct., 1998, 16, Iss. 1: 29–34. https://doi.org/10.1002/(SICI)1099-0844(199803)16:1<29::AID-CBF758>3.0.CO;2-6
Deng Z., Zhang X., Tang W., Oses-Prieto J. A., Suzuki N., Gendron J. M., Chen H., Guan S., Chalkley R. J., Peterman T. K., Burlingame A. L., Wang Z. Y. Mol. Cell. Proteomics., 2007, 6, No 12: 2058–2071. https://doi.org/10.1074/mcp.M700123-MCP200
Liu Y., Wu R., Wan Q., Xie G., Bi Y. Plant Cell Physiol., 2007, 48, No 3: 511–522. https://doi.org/10.1093/pcp/pcm020
Herbette S., Cochard H. Plant Physiol., 2010, 153, No 4: 1932–1939. https://doi.org/10.1104/pp.110.155200
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.