Role of brassinosteroids in the adaptation of plant mitochondria functioning in vivo under abiotic stress conditions

Authors

  • M. V. Derevyanchuk
  • O. I. Grabelnyh
  • R.P. Litvinovskaуа
  • V. K. Voinikov
  • A. L. Sauchuk
  • V. A. Khripach
  • V. S. Kravets

DOI:

https://doi.org/10.15407/dopovidi2015.01.153

Keywords:

24-epibrassinolide, Arabidopsis thaliana, cell respiration, salt stress

Abstract

The role of brassinosteroids (BRs) in the activation of the mitochondrial electron transport chain under salt stress conditions is investigated. Lowering the endogenous BRs level with the inhibitor of hormone biosynthesis, brassinazole, decreases the cell respiration. We have demonstrated that BRs activate cell respiration and key cellular enzymatic antioxidant systems (catalase, guaiacol peroxidase, superoxide dismutase) and promote the accumulation of osmoprotectors and scavengers of reactive oxygen species (ROS) – glutathione and proline. Our results indicate that BRs may be involved in the regulation of ROS metabolism and mitochondria homeostasis under the abiotic stress condition.

Downloads

Download data is not yet available.

References

Kim M. H., Kim Y., Kim J. W. et al. Plant Cell Physiol., 2013, 54: 1620–1634. https://doi.org/10.1093/pcp/pct106

Nakashita H., Yasuda M., Nitta T. et al. Plant J., 2003, 33: 887–898. https://doi.org/10.1046/j.1365-313X.2003.01675.x

Kagale S., Divi U., Krochko J. et al. Planta, 2007, 225: 353–364. https://doi.org/10.1007/s00425-006-0361-6

de Azevedo Neto A. D., Prisco J. T., Enéas-Filho J. et al. Environ. Exp. Bot., 2006, 56: 87–94. https://doi.org/10.1016/j.envexpbot.2005.01.008

Miller G. A. D., Suzuki N., Ciftci-Yilmaz S. et al. Plant Cell Environ, 2010, 33: 453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x

Xia X.-J., Wang Y.-J., Zhou Y.-H. et al. Plant Physiol, 2009, 150: 801–814. https://doi.org/10.1104/pp.109.138230

Goda H., Sawa S., Asami T. et al. Plant Physiol, 2004, 134: 1555–1573. https://doi.org/10.1104/pp.103.034736

Rathore R., Zheng Y. M., Niu C. F. et al. Free Radic. Biol. Med., 2008, 45: 1223–1231. https://doi.org/10.1016/j.freeradbiomed.2008.06.012

Monnet F., Bordas F., Deluchat V. et al. Chemosphere, 2006, 65: 1806–1813. https://doi.org/10.1016/j.chemosphere.2006.04.022

Rhee S., Chang T.-S., Jeong W. et al. Mol. Cells., 2010, 29: 539–549. https://doi.org/10.1007/s10059-010-0082-3

Bradford M. M. Anal. Biochem., 1976, 72: 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Bates L. S., Waldren R. P., Teare I. D. Plant Soil, 1973, 39: 205–207. https://doi.org/10.1007/BF00018060

Jacoby R. P., Taylor N. L., Millar A. H. Trends Plant Sci., 2011, 16: 614–623. https://doi.org/10.1016/j.tplants.2011.08.002

Queval G., Jaillard D., Zechmann B. et al. Plant, Cell & Environment, 2011, 34: 21–32. https://doi.org/10.1111/j.1365-3040.2010.02222.x

Smirnoff N., Cumbes Q. J. Phytochemistry, 1989, 28: 1057–1060. https://doi.org/10.1016/0031-9422(89)80182-7

Published

08.01.2025

How to Cite

Derevyanchuk, M. V., Grabelnyh, O. I., Litvinovskaуа R., Voinikov, V. K., Sauchuk, A. L., Khripach, V. A., & Kravets, V. S. (2025). Role of brassinosteroids in the adaptation of plant mitochondria functioning in vivo under abiotic stress conditions . Reports of the National Academy of Sciences of Ukraine, (1), 153–158. https://doi.org/10.15407/dopovidi2015.01.153