Role of brassinosteroids in the adaptation of plant mitochondria functioning in vivo under abiotic stress conditions
DOI:
https://doi.org/10.15407/dopovidi2015.01.153Keywords:
24-epibrassinolide, Arabidopsis thaliana, cell respiration, salt stressAbstract
The role of brassinosteroids (BRs) in the activation of the mitochondrial electron transport chain under salt stress conditions is investigated. Lowering the endogenous BRs level with the inhibitor of hormone biosynthesis, brassinazole, decreases the cell respiration. We have demonstrated that BRs activate cell respiration and key cellular enzymatic antioxidant systems (catalase, guaiacol peroxidase, superoxide dismutase) and promote the accumulation of osmoprotectors and scavengers of reactive oxygen species (ROS) – glutathione and proline. Our results indicate that BRs may be involved in the regulation of ROS metabolism and mitochondria homeostasis under the abiotic stress condition.
Downloads
References
Kim M. H., Kim Y., Kim J. W. et al. Plant Cell Physiol., 2013, 54: 1620–1634. https://doi.org/10.1093/pcp/pct106
Nakashita H., Yasuda M., Nitta T. et al. Plant J., 2003, 33: 887–898. https://doi.org/10.1046/j.1365-313X.2003.01675.x
Kagale S., Divi U., Krochko J. et al. Planta, 2007, 225: 353–364. https://doi.org/10.1007/s00425-006-0361-6
de Azevedo Neto A. D., Prisco J. T., Enéas-Filho J. et al. Environ. Exp. Bot., 2006, 56: 87–94. https://doi.org/10.1016/j.envexpbot.2005.01.008
Miller G. A. D., Suzuki N., Ciftci-Yilmaz S. et al. Plant Cell Environ, 2010, 33: 453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x
Xia X.-J., Wang Y.-J., Zhou Y.-H. et al. Plant Physiol, 2009, 150: 801–814. https://doi.org/10.1104/pp.109.138230
Goda H., Sawa S., Asami T. et al. Plant Physiol, 2004, 134: 1555–1573. https://doi.org/10.1104/pp.103.034736
Rathore R., Zheng Y. M., Niu C. F. et al. Free Radic. Biol. Med., 2008, 45: 1223–1231. https://doi.org/10.1016/j.freeradbiomed.2008.06.012
Monnet F., Bordas F., Deluchat V. et al. Chemosphere, 2006, 65: 1806–1813. https://doi.org/10.1016/j.chemosphere.2006.04.022
Rhee S., Chang T.-S., Jeong W. et al. Mol. Cells., 2010, 29: 539–549. https://doi.org/10.1007/s10059-010-0082-3
Bradford M. M. Anal. Biochem., 1976, 72: 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Bates L. S., Waldren R. P., Teare I. D. Plant Soil, 1973, 39: 205–207. https://doi.org/10.1007/BF00018060
Jacoby R. P., Taylor N. L., Millar A. H. Trends Plant Sci., 2011, 16: 614–623. https://doi.org/10.1016/j.tplants.2011.08.002
Queval G., Jaillard D., Zechmann B. et al. Plant, Cell & Environment, 2011, 34: 21–32. https://doi.org/10.1111/j.1365-3040.2010.02222.x
Smirnoff N., Cumbes Q. J. Phytochemistry, 1989, 28: 1057–1060. https://doi.org/10.1016/0031-9422(89)80182-7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.