Participation of actin filaments in the response of Arabidopsis thaliana root cells to low-temperature action
DOI:
https://doi.org/10.15407/dopovidi2015.07.136Keywords:
actin filaments, low temperature, microtubules, sytoskeletonAbstract
The effect of the low temperature (4 ºC) on the organization of actin filaments (microfilaments) of cells of different growth zones of the root of Arabidopsis thaliana (L.) is studied. For the visualization of these structures and detailed in vivo analysis of the changes in their structure, the line A. thaliana expressing the chimeric gene gfp-abd2-gfp was used. It is found that cold treatment inhibits growth of the main root and gives its morphology, causing a large number of deformed (ectopic) root hairs in the zone of differentiation. The temporal relationship of the disorientation and the organization of actin filaments and the detected changes of growth and morphology of roots under conditions of cold factor is shown. It is found that the most sensitive to the effects of the cold actin filaments are meristematic cells and all epidermal cells of the root zone of A. thaliana.
Downloads
References
Khokhlova L. P., Olinevich O.V., Raudaskoski M. Cell Biol. Int., 2003, 27, No 3: 211–212. https://doi.org/10.1016/S1065-6995(02)00336-0
Ruelland E., Zachowski A. Environ. Exp. Bot., 2010, 69, No 3: 225–232. https://doi.org/10.1016/j.envexpbot.2010.05.011
Baskin T. I. The cytoskeleton, Biochemistry and molecular biology of plants, Eds. B.B. Buchanan,W. Gruissem, R.L. Jones, Rockville, Courier Companies, 2000: 202–258.
Barlow W.P., Balŭska F. Plant Mol. Biol., 2000, 51: 289–322.
Mizuno K. Plant Physiol., 1992, 100, No 2: 740–748. https://doi.org/10.1104/pp.100.2.740
Zhao J. L., Li X. J., Zhang H., Li Y. Plant Cell Rep., 2003, 22, No 1: 32–37. https://doi.org/10.1007/s00299-003-0656-z
Balŭska F., Mancuso S., Volkmann D., Barlow P.W. Trends Plant Sci., 2010, 15, No 7: 402–408. https://doi.org/10.1016/j.tplants.2010.04.007
Sheremet Ya.A., Yemets A. I., Blume Ya.B. Cytology and Genetics, 2012, 46, No 1: 1–8. https://doi.org/10.3103/S0095452712010112
Farajalla M.R., Gulick P. J. Genome, 2007, 50: 502–510. https://doi.org/10.1139/G07-027
Aström H., Virtanen I., Raudaskoski M. Protoplasma, 1991, 160: 99–107. https://doi.org/10.1007/BF01539961
Pokorna J., Schwarzerova K., Zelenkova S., Petrasek J., Janotova I., Capkova V. Plant, Cell and Environment, 2004, 27: 641–653. https://doi.org/10.1111/j.1365-3040.2004.01186.x
Wang X., Yang P., Zhang X., Xu Y., Kuang T., Shen S., He Y. Proteomics, 2009, 9, Iss. 19: 4529–4538. https://doi.org/10.1002/pmic.200900062
Wang Y.-S., Yoo C.-M., Blancaflor E.B. New Phytologist., 2008, 177: 525–536.
Voigt B., Timmers A.C. J., Samaj J., Muller J., Baluska F., Menzel D. Eur. J. Cell Biol., 2005, 84: 95–608.
Quader H. Cytoskeleton: Microtubules, Progress in Botany, Heidelberg, Berlin: Springer, 1998: 374–395.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.