The cladistic analysis of serine/threonine protein kinase KIN10 and peculiarities of its an expression in different organs of Arabidopsis thaliana
DOI:
https://doi.org/10.15407/dopovidi2016.01.081Keywords:
cladistic analysis, closest homologs, gene expression, KIN10, phylogenetic tree, serine-threonine protein kinasesAbstract
The cladistic analysis and the phylogenetic tree construction of the closest homologs of protein kinase KIN10 are performed. The obtained results have shown the membership of KIN10 and its two closest homologs in plants (KIN11 (P92958) and Akin11 (Q9FLZ3)) to the unique subfamily of protein kinases SnRK1. In addition, the expression level of KIN10 gene in different plant organs are characterized. The highest level of KIN10 transcripts is observed in the green photosynthetic part of the plant, where KIN10 protein kinase regulates the biosynthetic and signaling processes.
Downloads
References
Mohannath G., Jackel J. N., Lee Y. H., Buchmann C., Wang H., Patil V., Adams A. K., Bisar D. M. PLoS One, 2014, 9, No 1: e87592. doi: https://doi.org/10.1371/journal.pone.0087592, PMid:24498147 PMCid:PMC3907550
Halford N. G., Hey S., Jhurreea D., Laurie S., McKibbin R. S., Paul M., Zhang Y. J. Exp. Bot., 2003, 54: 467–475. doi: https://doi.org/10.1093/jxb/erg038, PMid:12508057
Halford N. G., Hardie D. G. Plant Mol. Biol., 1998, 37: 735–748. doi: https://doi.org/10.1023/A:1006024231305, PMid:9678569
Son S., Oh C.J., An C.S. Plant Pathol. J., 2014, 30, Iss. 3: 269–278. doi: https://doi.org/10.5423/PPJ.OA.06.2014.0061, PMid:25289013 PMCid:PMC4181108
Baena-González E., Sheen J. Trends Plant Sci., 2008, 9: 474–482. doi: https://doi.org/10.1016/j.tplants.2008.06.006, PMid:18701338 PMCid:PMC3075853
Lawlor D. W., Paul M. J. Front. Plant Sci., 2014, 5: 418–432. doi: https://doi.org/10.3389/fpls.2014.00418, PMid:25202319 PMCid:PMC4142875
Nunes C., O'Hara L. E., Primavesi L. F., Delatte T. L., Schluepmann H., Somsen G. W., Silva A. B., Fevereiro P. S., Wingler A., Paul M. J. Plant Physiol., 2013, 162, No 3: 1720–1732. doi: https://doi.org/10.1104/pp.113.220657, PMid:23735508 PMCid:PMC3707538
Jeong E.-Y., Seo P. J., Woo J. C., Park C.-M. BMC Plant Biol., 2015, 15, No 1: 110–123. doi: https://doi.org/10.1186/s12870-015-0503-8, PMid:25929516 PMCid:PMC4416337
Fragoso S., Espíndola L., Páez-Valencia J., Gamboa A., Camacho Y., Martínez-Barajas E., Coello P. Plant Physiol., 2009, 149, No 4: 1906–1916. doi: https://doi.org/10.1104/pp.108.133298, PMid:19211700 PMCid:PMC2663738
Karpov P. A., Nadezhdina E. S., Yemets A. I., Blume Ya. B. Moscow Univ. Biol. Sci. Bull., 2010, 65: 213–216. doi: https://doi.org/10.3103/S0096392510040267
Kjaersgârd I. V., Jespersen H. M., Rasmussen S. K., Welinder K. G. Plant Mol. Biol., 1997, 33, No 4: 699–708. doi: https://doi.org/10.1023/A:1005707813801, PMid:9132061
Sato S., Kaneko T., Kotani H., Nakamura Y., Asamizu E., Miyajima N., Tabata S. DNA Res., 1998, 5: 41–54. doi: https://doi.org/10.1093/dnares/5.1.41, PMid:9628582
Littler D. R., Walker J. R., Davis T., Wybenga-Groot L. E., Finerty PJ. Jr., Newman E., Mackenzie F., Dhe-Paganon S. Acta. Crystallogr. Sect. F. Struct. Biol. Cryst. Commun., 2010, 66: 143–151. doi: https://doi.org/10.1107/S1744309109052543, PMid:20124709 PMCid:PMC2815679
Bright N. J., Carling D., Thornton C. J. Biol. Chem., 2008, 22: 14946–14954. doi: https://doi.org/10.1074/jbc.M710381200, PMid:18339622 PMCid:PMC3258900
Matenia D., Mandelkow E. M. Trends Biochem. Sci., 2009: 34: 332–342. doi: https://doi.org/10.1016/j.tibs.2009.03.008, PMid:19559622
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.