Сultivation features of the riboflavin-producing strain Bacillus subti lis IFBG MK-1A using a bioreactor with feeding
DOI:
https://doi.org/10.15407/dopovidi2022.06.079Keywords:
bioreactor, riboflavin, cultivation, Bacillus subtilisAbstract
Riboflavin plays an important role in a wide range of biological processes. The aim of the work was to establish the peculiarities of the riboflavin-producing strain Bacillus subtilis IFBG MK-1A cultivation in a bioreactor. The article shows that riboflavin accumulation for 66 hours was 13.9 g/dm3 when strain-producer was cultivated in flasks with volume of 1 dm3. Scaling of strain producer process with feeding in a bioreactor with a volume of 10 dm3 was carried out. It was established that the optimal volume of feeding was 47 %, and amount of ammonia water required for pH stabilization and riboflavin accumulation was 8 % of medium volume before inoculation. Glucose conversion was 12 %, while riboflavin accumulation — 19.1 g/dm3. It was shown that the cultivation of B. subtilis IFBG MK-1A strain using a bioreactor with periodic feeding leads to a significant increase in the accumulation of riboflavin (by 65 %) compared to the accumulation of riboflavin in flasks.
Downloads
References
Zhao, G., Dong, F., Lao, X. & Zheng, H. (2021). Strategies to increase the production of biosynthetic riboflavin. Mol. Biotechnol., 63, рр. 909-918. https://doi.org/10.1007/s12033-021-00318-7
Olfat, N., Ashoori, M. & Saedisomeolia, A. (2022). Riboflavin is an antioxidant: a review update. Br. J. Nutr., 9 р. https://doi.org/10.1017/S0007114521005031
Aljaadi, A. M., Devlin, A. M. & Green, T. J. (2022). Riboflavin intake and status and relationship to anemia. Nutr. Rev., nuac043. https://doi.org/10.1093/nutrit/nuac043
Bosch, A. M. (2020). Riboflavin. In Principles of nutrigenetics and nutrigenomics (рр. 283-286). London: Elsevier. https://doi.org/10.1016/b978-0-12-804572-5.00037-9
Merrill, A. H. & McCormick, D. B. (2020). Riboflavin. Present knowledge in nutrition (рр. 189-207). London: Elsevier. https://doi.org/10.1016/b978-0-323-66162-1.00011-1
Pérez-García, F., Klein, V. J., Brito, L. F. & Brautaset, T. (2022). From brown seaweed to a sustainable microbial feedstock for the production of riboflavin. Front. Bioeng. Biotechnol, 10, 863690. https://doi.org/10.3389/fbioe.2022.863690
Bretzel, W., Schurter, W., Ludwig, B., Kupfer E., Doswald S., Pfister M. & van Loon A. P. G. M. (1999). Commercial riboflavin production by recombinant Bacillus subtilis: down-stream processing and comparison of the composition of riboflavin produced by fermentation or chemical synthesis. J. Ind. Microbiol. Biotechol., 22, рр. 19-26. https://doi.org/10.1038/sj.jim.2900604
Radchenko, M. M., Tigunova, O. O., Zelena, L. B., Beiko, N. Ye., Andriiash, H. S. & Shulga, S. M. (2021). Phylogenetic analysis of the Bacillus subtilis IFBG MK-2 strain and riboflavin production by its induced clones. Cytol. Genet., 55, рр. 145-151. https://doi.org/10.3103/S0095452721020134
Ostapchenko, L. I., Kompanec, I. V., Skopenko, O. V., Synelnyk, Т. B., Savchuk, О. М. & Berehovyi, S. М. (2019). Bioorganic chemistry. Kyiv: VOC “Kyiv University” (in Ukrainian).
Stahmann, K.-P., Revuelta, J. L. & Seulberger, H. (2000). Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl. Microbiol. Biotechnol., 53, No. 5, рр. 509-516. https://doi.org/10.1007/s002530051649
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.