For the first time in thousands of years: colored cereal grains as the functional food of the future
DOI:
https://doi.org/10.15407/visn2025.07.007Keywords:
colored grains, wheat, naked barley, anthocyanins, carotenoids, antioxidants, food functionality.Abstract
The article contains a scientific justification for a new direction for Ukraine in the breeding of wheat and naked barley with colored (black, purple, blue) grains in order to improve (biofortification) the nutritional (biological) value of the grain of these crops. Cereal grains are the basis of the world population's nutrition, and the strategy of biofortification of cereal grains is today called the "second green revolution".
The black, blue and purple color of cereal grains is caused by the pigments anthocyanins and phytomelanins, which have high antioxidant activity and, according to the classification, belong to the group of plant flavonoids. These are part of an even larger group of phytochemical components of grain — bioactive phenolic compounds. The yellow color of the endosperm is caused by carotenoid pigments from the group of tetraterpenoid pigments, which are also antioxidants.
Bioactive pigments anthocyanins of colored fruits, vegetables, legumes and colored cereals, together with carotenoids, are able to provide humans with nutritional prevention of a number of serious diseases, such as cardiovascular pathologies, diabetes, various forms of cancer. Therefore, these products are becoming increasingly popular among the population of developed countries of the world.
The article provides examples of unique varieties of wheat and edible naked barley with colored grain created by the authors, which are currently being introduced in Ukraine into the industrial production of functional food products valuable for health. It is emphasized that over thousands of years of wheat’s existence, its grain has never had blue, purple, black colors, and, accordingly, such a high nutritional functionality of the grain. Genes encoding the unique colors of cultivated wheat grain were transferred to its genome from wild relative species.
The authors of the article are the first scientific team in Ukraine to create and bring to the State Register a variety of black wheat with high biological value of grain and initiated a new direction for Ukraine in the selection of varieties of colored wheat and naked barley. These varieties should become the basis for the creation of new functional food products on the food market of Ukraine.
The authors of the article propose, following the example of developed countries of the world, to develop a national strategy for healthy (functional) nutrition in Ukraine, aimed at the maximum (not less than 50%) increase in the share of whole grain cereal products in the diet of the population of Ukraine.
The scientific innovations of the authors of the article concern such branches of grain processing in Ukraine as the production of flour, bread, bread products and cereals.
Cite this article:
Rybalka O.I., Morhun V.V., Morgun B.V., Polishchuk S.S. For the first time in thousands of years: colored cereal grains as the functional food of the future. Visn. Nac. Akad. Nauk Ukr. 2025. (7): 7—27. https://doi.org/10.15407/visn2025.07.007
References
Einbond L.S., Reynertson K.A., Luo X.-D., Basile M.J., Kennelly E.J. Anthocyanin antioxidants from edible fruits. Food Chem. 2004. 84(1): 23—28. https://doi.org/10.1016/s0308-8146(03)00162-6
Zhang B., Peng H., Deng Z., Tsao R. Phytochemicals of lentil (Lens culinaris) and their antioxidant and anti-inflammatory effects. J. Food Bioactives. 2018. 1: 93—103. https://doi.org/10.31665/jfb.2018.1128
Andersen O., Jordheim M. The anthocyanins. In: Flavonoids: Chemistry, Biochemistry and Applications. Edited by O.M. Andersen, K.R. Markham. Boca Raton, CRC Press, 2006. P. 471—552. https://doi.org/10.1201/9781420039443
Khoo H.E., Azlan A., Tang S.T., Lim S.M. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017. 61(1): 1361779. https://doi.org/10.1080/16546628.2017.1361779
Liu R.H. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J. Nutr. 2004. 134(12): 3479—3485. https://doi.org/10.1093/jn/134.12.3479s
Liu R.H. Whole grain phytochemicals and health. J. Cereal Sci. 2007. 46(3): 207—219. https://doi.org/10.1016/j.jcs.2007.06.010
Shipp J., Abdel-Aal E.-S. Food applications and physiological effects of anthocyanins as functional food ingredients. The Open Food Science Journal. 2010. 4: 7—22. https://doi.org/10.2174/1874256401004010007
Reis J., Monteiro V., Gomes R., Moraes do Carmo M., Vilhena da Costa G., Ribera P., Monteiro M. Action mechanism and cardiovascular effect of anthocyanins: a systematic review of animal and human studies. J. Transl. Med. 2016. 14: 315. https://doi.org/10.1186/s12967-016-1076-5
Mazza G. Anthocyanins and heart health. Annali dell’Istituto Superiore di Sanità. 2007. 43(4): 369—374. https://www.iss.it/documents/20126/45616/369+-+ANN_07_54_Mazza.1201593082.pdf/ed763f20-9ff1-5536-dffe-9ff6d18b55d3?t=1581099677023
Keppler K., Humpf H.-U. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorg. Med. Chem. 2005. 13(17): 5195—5205. https://doi.org/10.1016/j.bmc.2005.05.003
Abdel-Aal E.-S., Abou-Arab A., Gamel T., Hucl P., Young J., Rabalski I. Fractionation of blue wheat anthocyanin compounds and their contribution to antioxidant properties. J. Agric. Food Chem. 2008. 56(23): 11171—11177. https://doi.org/10.1021/jf802168c
Kahkonen M., Heinonen M. Antioxidant activity of anthocyanins and their aglycones. J. Agric. Food Chem. 2003. 51(3): 628—633. https://doi.org/10.1021/jf025551i
Fukumoto L., Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000. 48(8): 3597—3604. https://doi.org/10.1021/jf000220w
Astadi I., Astuti M., Santoso U., Nugraheni P. In vitro antioxidant activity of anthocyanins of black soybean seed coat in human low-density lipoprotein (LDL). Food Chem. 2009. 112(3): 659—663. https://doi.org/10.1016/j.foodchem.2008.06.034
DeFuria J., Bennett G., Strissel K. Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae. J. Nutr. 2009. 139(8): 1510—1516. https://doi.org/10.3945/jn.109.105155
Guo H., Ling W., Wang Q. Effect of anthocyanin-rich extract from black rice (Oryza sativa L. indica) on hyperlipidemia and insulin resistance in fructose-fed rats. Plant Foods Hum. Nutr. 2007. 62: 1—6. https://doi.org/10.1007/s11130-006-0031-7
Jayaprakasam B., Vareed S., Olson L., Nair M. Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J. Agric. Food Chem. 2005. 53(1): 28—31. https://doi.org/10.1021/jf049018+
Fimognari C., Berti F., Nusse M., Cantelli-Forti G., Hrelia P. Induction of apoptosis in two human leukemia cell lines as well as differentiation in human promyelocytic cells by cyanin-3-O-beta-glucopyranoside. Biochem. Pharmacol. 2004. 67(11): 2047—2056. https://doi.org/10.1016/j.bcp.2004.02.021
Kang S., Seeram N., Nair M., Bourquin L. Tart cherry anthocyanins inhibit tumor development in Apc (Min) mice and reduce proliferation of human colon cancer cells. Cancer Lett. 2003. 194(1): 3—19. https://doi.org/10.1016/s0304-3835(02)00583-9
Sangsefidi Z., Hasanizadeh S., Hosseinzadeh M. Effect of purified anthocyanins or anthocyanin-rich extracts on C-reactive protein levels: a systematic review and meta-analysis of randomised clinical trials. British J. Nutr. 2018. 120(12): 1406—1414. https://doi.org/10.1017/s0007114518002957
Kalt W., Blumberg J., McDonald J. Identification of anthocyanins in the liver, eye and brain of blueberry-fed pigs. J. Agric. Food Chem. 2008. 56(3): 705—712. https://doi.org/10.1021/jf071998l
Matsumoto H., Nakamura Y., Iida H., Ito K., Ohguro H. Comparative assessment of distribution of blackcurrant anthocyanins in rabbit and rat ocular tissues. Exp. Eye Res. 2006. 83(2): 348—356. https://doi.org/10.1016/j.exer.2005.12.019
Matsumoto M., Hara H., Chiji H., Kasai T. Gastroprotective effect of red pigments in black chokeberry fruit (Aronia melanocarpa Elliot) on acute gastric hemorrhagic lesions in rats. J. Agric. Food Chem. 2004. 52(8): 2226—2229. https://doi.org/10.1021/jf034818q
Canter P., Ernst E. Anthocyanosides of Vaccinium myrtillus (bilberry) for night vision — a systematic review of placebo-controlled trials. Therapeutic Review. 2004. 49(1): 38—50. https://doi.org/10.1016/j.survophthal.2003.10.006
Akhmadieva A., Zaichkina S., Ruzieva R., Ganassi E. The protective action of a natural preparation of anthocyanin (pelargonidin-3,5-diglucoside). Radiobiologiia. 1993. 33(3): 433—435.
Herrero J., Frutos M. Effect of concentrated plum juice on physicochemical and sensory properties of yoghurt made at bench top scale. Int. J. Dairy Technol. 2014. 67(1): 123—128. https://doi.org/10.1111/1471-0307.12101
Bueno J., Plaza S., Escudero R., Jimenez A., Fett R., Asuero A. Analysis and antioxidant capacity of anthocyanin pigments. Part II: Chemical structure, color, and intake of anthocyanins. Critical Reviews in Analytical Chemistry. 2012. 42(2): 126—151. https://doi.org/10.1080/10408347.2011.632314
Dang Y., Li Z., Yu F. Recent advances in astaxanthin as an antioxidant in food applications. Antioxidants. 2024. 13(7): 879. https://doi.org/10.3390/antiox13070879
Pozniak C., Knox R., Clarke F., Clarke J. Identification of QTL and association of phytoene synthase gene with endosperm color in durum wheat. Theor. Appl. Genet. 2007. 114: 525—537. https://doi.org/10.1007/s00122-006-0453-5
Zhang W., Dubcovsky J. Association between allelic variation at the phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor. Appl. Genet. 2008. 116: 635—645. https://doi.org/10.1007/s00122-007-0697-8
Guo Z.F., Zhang Z.B., Xu P., Guo Y.N. Analysis of nutrient composition of purple wheat. Cereal Res. Commun. 2013. 41: 293—303. https://doi.org/10.1556/crc.2012.0037
Jeewani D., Nishantha M. Blue wheat: genetics, healthy value and food processing. Sch. J. Agric. Vet. Sci. 2018. 5(4): 230—235. https://doi.org/10.21276/sjavs.2018.5.4.7
Guo Z., Xu P., Zhang Z., Guo Y. Segregation ratios of colored grains in F1 hybrid wheat. Crop Breeding and Applied Biotechnology. 2012. 12(2): 126—131. https://doi.org/10.1590/s1984-70332012000200005
Song E.-S., Park S.-J., Woo N.-R.-A., Won M.-H. Antioxidant capacity of colored barley extracts by varieties. J. Korean Soc. Food Sci. Nutr. 2005. 34(10): 1491—1497. https://doi.org/10.3746/jkfn.2005.34.10.1491
Kim M.-J., Hyun J.-N., Kim J.-A., Park J.-C., Kim M.-Y., Kim J.-G., Lee S.-J., Chun S.-C., Chung I.-M. Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J. Agric. Food Chem. 2007. 55: 4802—4809. https://doi.org/10.1021/jf0701943
Sherman J., Souza E., See D., Talbert L.E. Microsatellite markers for kernel color genes in wheat. Crop Science. 2008. 48: 1419—1424. https://doi.org/10.2135/cropsci2007.10.0561
Garg M., Kaur S., Sharma A. et al. Rising demand for healthy foods-anthocyanin biofortified colored wheat is a new research trend. Front. Nutr. 2022. 9: 1—23. https://doi.org/10.3389/fnut.2022.878221
Zeller E., Cermefio M., Miller T. Cytological analysis on the distribution and origin of the alien chromosome pair conferring blue aleurone color in several European common wheat (Triticum aestivum L.) strains. Theor. Appl. Genet. 1991. 81: 551—558. https://doi.org/10.1007/978-3-476-03295-9_6
Keppenne V., Baenziger P. Inheritance of the blue aleurone trait in diverse wheat crosses. Genome. 1990. 33: 525—529. https://doi.org/10.4337/9781788972345.00009
Singh K., Ghai M., Garg M., Chhuneja P., Kaur P., Schnurbusch T., Keller B., Dhaliwal H.S. An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum × T. monococcum RIL population. Theor. Appl. Genet. 2007. 115: 301—312. https://doi.org/10.1007/s00122-007-0543-z
Knievel D., Abdel-Aal E., Rabalski I., Nakamura T., Hucl P. Grain color development and the inheritance of high anthocyanin blue aleurone and purple pericarp in spring wheat (Triticum aestivum L.). J. Cereal Sci. 2009. 50(3): 113—120. https://doi.org/10.1016/j.jcs.2009.03.007
Zeven A.C. Wheats with purple and blue grains — a review. Euphytica. 1991. 56: 243—258. https://doi.org/10.1007/bf00042371
Dubcovsky J., Luo M., Zhong G., Bransteitter R., Desai A., Kilian A., Kleinhofs A., Dvorak J. Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics. 1996. 143: 983—988. https://doi.org/10.1093/genetics/143.2.983
Shen Y., She J., Dawadondup Z., Wang Y., Pu J., Feng Y., Chu C., Wang X., Qi Z. Physical localization of a novel blue-grained gene derived from Thinopyrum bessarabicum. Molecular Breeding. 2013. 31: 195—200. https://doi.org/10.1007/s11032-012-9783-y
Li W., Shan F., Sun S., Corke H., Beta T. Free radical scavenging properties and phenolic content of Chinese black-grained wheat. J. Agric. Food Chem. 2005. 53(22): 8533—8538. https://doi.org/10.1021/jf051634y
Garg M., Chawla M., Chunduri V., Kumar R., Sharma S., Sharma N., Kaur N., Kumar A., Mundey J., Saini M., Singh S. Transfer of grain colors to elite wheat cultivars and their characterization. J. Cereal Sci. 2016. 71: 138—144. https://doi.org/10.1016/j.jcs.2016.08.004
Rivas-Gonzalo J.C. Analysis of anthocyanins. In: Saltmarsh M., Santos-Buelga C., Williamson G. (eds). Methods in Polyphenol Analysis. Royal Society of Chemistry, London, 2003. P. 338—358.
Finch R., Simpson E. New colors and complementary color genes in barley. Zeitschrift fur Pflanzenzuchtung. 1978. 81(1): 40—53.
Shim J., Suh S.J. Linkage relationship of blue aleurone genes (Bl's) in barley. In: Yasuda S., Konishi T. (eds). Barley Genetics V. Proc. Fifth Int. Barley Genet. Symp. Okayama, Sanyo Press Co., 1986. P. 213—217.
Zhang X.-W., Jiang Q.-T., Wei Y.-M., Liu C. Inheritance analysis and mapping of quantitative trait loci (QTL) controlling individual anthocyanin compounds in purple barley (Hordeum vulgare L.) grains. Plos One. 2017. https://doi.org/10.1371/journal.pone.0183704
Jia Q., Wang J., Zhu J., Hua W., Shang Y., Yang J. Toward identification of black lemma and pericarp gene Blp1 in barley combining bulked segregant analysis and specific-locus amplified fragment sequencing. Front. Plant Sci. 2017. 8: 1414. https://doi.org/10.3389/fpls.2017.01414
Harlan H.V. Some distinctions in our cultivated barleys with reference to their use in plant breeding. Washington, Govt. Print. Off., 1914. https://doi.org/10.5962/bhl.title.37224
Siebenhandl S., Grausgruber H., Pellegrini N., Del Rio D., Fogliano V., Pernice R. Phytochemical profile of main antioxidants in different fractions of purple and blue wheat, and black barley. J. Agric. Food Chem. 2007. 55(21): 8541—8547. https://doi.org/10.1021/jf072021j
Bird A., Flory C., Davies D., Usher S., Topping D. A novel barley cultivar (Himalaya 292) with a specific gene mutation in starch synthase IIa raises large bowel starch and short-chain fatty acids in rats. J. Nutr. 2004. 134(4): 831—835. https://doi.org/10.1093/jn/134.4.831
Bird A., Jackson M., King R., Davies D., Usher S., Topping D. A novel high-amylose barley cultivar (Hordeum vulgare var. Himalaya 292) lowers plasma cholesterol and alters indices of large-bowel fermentation in pigs. British J. Nutr. 2004. 92(4): 607—615. https://doi.org/10.1079/BJN20041248
Clarke B., Liang R., Morell M., Bird A., Jenkins C., Li Z. Gene expression in a starch synthase IIa mutant of barley: changes in the level of gene transcription and grain composition. Funct. Integr. Genomics. 2008. 8: 211—221. https://doi.org/10.1007/s10142-007-0070-7
Berdanier C., Dwyer J., Herber D. Handbook of Nutrition and Food. CRC Press, 2013. https://doi.org/10.1201/b15294
Rosell С., Barro F., Sousa C., Mena C. Cereals for developing gluten-free products and analytical tools for gluten detection. J. Cereal Sci. 2014. 59(3): 354—364. https://doi.org/10.1016/J.JCS.2013.10.001
Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutrition Research Reviews. 2010. 23(1): 65—134. https://doi.org/10.1017/s0954422410000041
Truswell A. Cereal grains and coronary heart disease. Eur. J. Clin. Nutr. 2002. 56: 1—14. https://doi.org/10.1038/sj.ejcn.1601283