For the first time in thousands of years: colored cereal grains as the functional food of the future

Authors

  • Olexandr I. Rybalka Plant Breeding and Genetics Institute — National Center of Seed and Cultivars Investigation of National Academy of Agrarian Sciences of Ukraine, Odesa, Ukraine Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • Volodymyr V. Morhun Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine https://orcid.org/0000-0001-5842-6328
  • Bogdan V. Morgun Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, Kyiv, Ukraine Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine https://orcid.org/0000-0001-7041-6894
  • Sergiy S. Polishchuk Plant Breeding and Genetics Institute — National Center of Seed and Cultivars Investigation of National Academy of Agrarian Sciences of Ukraine, Odesa, Ukraine https://orcid.org/0009-0000-8934-3621

DOI:

https://doi.org/10.15407/visn2025.07.007

Keywords:

colored grains, wheat, naked barley, anthocyanins, carotenoids, antioxidants, food functionality.

Abstract

The article contains a scientific justification for a new direction for Ukraine in the breeding of wheat and naked barley with colored (black, purple, blue) grains in order to improve (biofortification) the nutritional (biological) value of the grain of these crops. Cereal grains are the basis of the world population's nutrition, and the strategy of biofortification of cereal grains is today called the "second green revolution".

The black, blue and purple color of cereal grains is caused by the pigments anthocyanins and phytomelanins, which have high antioxidant activity and, according to the classification, belong to the group of plant flavonoids. These are part of an even larger group of phytochemical components of grain — bioactive phenolic compounds. The yellow color of the endosperm is caused by carotenoid pigments from the group of tetraterpenoid pigments, which are also antioxidants.

Bioactive pigments anthocyanins of colored fruits, vegetables, legumes and colored cereals, together with carotenoids, are able to provide humans with nutritional prevention of a number of serious diseases, such as cardiovascular pathologies, diabetes, various forms of cancer. Therefore, these products are becoming increasingly popular among the population of developed countries of the world.

The article provides examples of unique varieties of wheat and edible naked barley with colored grain created by the authors, which are currently being introduced in Ukraine into the industrial production of functional food products valuable for health. It is emphasized that over thousands of years of wheat’s existence, its grain has never had blue, purple, black colors, and, accordingly, such a high nutritional functionality of the grain. Genes encoding the unique colors of cultivated wheat grain were transferred to its genome from wild relative species.

The authors of the article are the first scientific team in Ukraine to create and bring to the State Register a variety of black wheat with high biological value of grain and initiated a new direction for Ukraine in the selection of varieties of colored wheat and naked barley. These varieties should become the basis for the creation of new functional food products on the food market of Ukraine.

The authors of the article propose, following the example of developed countries of the world, to develop a national strategy for healthy (functional) nutrition in Ukraine, aimed at the maximum (not less than 50%) increase in the share of whole grain cereal products in the diet of the population of Ukraine.

The scientific innovations of the authors of the article concern such branches of grain processing in Ukraine as the production of flour, bread, bread products and cereals.

Cite this article: 

Rybalka O.I., Morhun V.V., Morgun B.V., Polishchuk S.S. For the first time in thousands of years: colored cereal grains as the functional food of the future. Visn. Nac. Akad. Nauk Ukr. 2025. (7): 7—27. https://doi.org/10.15407/visn2025.07.007 

References

Einbond L.S., Reynertson K.A., Luo X.-D., Basile M.J., Kennelly E.J. Anthocyanin antioxidants from edible fruits. Food Chem. 2004. 84(1): 23—28. https://doi.org/10.1016/s0308-8146(03)00162-6

Zhang B., Peng H., Deng Z., Tsao R. Phytochemicals of lentil (Lens culinaris) and their antioxidant and anti-inflammatory effects. J. Food Bioactives. 2018. 1: 93—103. https://doi.org/10.31665/jfb.2018.1128

Andersen O., Jordheim M. The anthocyanins. In: Flavonoids: Chemistry, Biochemistry and Applications. Edited by O.M. Andersen, K.R. Markham. Boca Raton, CRC Press, 2006. P. 471—552. https://doi.org/10.1201/9781420039443

Khoo H.E., Azlan A., Tang S.T., Lim S.M. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017. 61(1): 1361779. https://doi.org/10.1080/16546628.2017.1361779

Liu R.H. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J. Nutr. 2004. 134(12): 3479—3485. https://doi.org/10.1093/jn/134.12.3479s

Liu R.H. Whole grain phytochemicals and health. J. Cereal Sci. 2007. 46(3): 207—219. https://doi.org/10.1016/j.jcs.2007.06.010

Shipp J., Abdel-Aal E.-S. Food applications and physiological effects of anthocyanins as functional food ingredients. The Open Food Science Journal. 2010. 4: 7—22. https://doi.org/10.2174/1874256401004010007

Reis J., Monteiro V., Gomes R., Moraes do Carmo M., Vilhena da Costa G., Ribera P., Monteiro M. Action mechanism and cardiovascular effect of anthocyanins: a systematic review of animal and human studies. J. Transl. Med. 2016. 14: 315. https://doi.org/10.1186/s12967-016-1076-5

Mazza G. Anthocyanins and heart health. Annali dell’Istituto Superiore di Sanità. 2007. 43(4): 369—374. https://www.iss.it/documents/20126/45616/369+-+ANN_07_54_Mazza.1201593082.pdf/ed763f20-9ff1-5536-dffe-9ff6d18b55d3?t=1581099677023

Keppler K., Humpf H.-U. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorg. Med. Chem. 2005. 13(17): 5195—5205. https://doi.org/10.1016/j.bmc.2005.05.003

Abdel-Aal E.-S., Abou-Arab A., Gamel T., Hucl P., Young J., Rabalski I. Fractionation of blue wheat anthocyanin compounds and their contribution to antioxidant properties. J. Agric. Food Chem. 2008. 56(23): 11171—11177. https://doi.org/10.1021/jf802168c

Kahkonen M., Heinonen M. Antioxidant activity of anthocyanins and their aglycones. J. Agric. Food Chem. 2003. 51(3): 628—633. https://doi.org/10.1021/jf025551i

Fukumoto L., Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000. 48(8): 3597—3604. https://doi.org/10.1021/jf000220w

Astadi I., Astuti M., Santoso U., Nugraheni P. In vitro antioxidant activity of anthocyanins of black soybean seed coat in human low-density lipoprotein (LDL). Food Chem. 2009. 112(3): 659—663. https://doi.org/10.1016/j.foodchem.2008.06.034

DeFuria J., Bennett G., Strissel K. Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae. J. Nutr. 2009. 139(8): 1510—1516. https://doi.org/10.3945/jn.109.105155

Guo H., Ling W., Wang Q. Effect of anthocyanin-rich extract from black rice (Oryza sativa L. indica) on hyperlipidemia and insulin resistance in fructose-fed rats. Plant Foods Hum. Nutr. 2007. 62: 1—6. https://doi.org/10.1007/s11130-006-0031-7

Jayaprakasam B., Vareed S., Olson L., Nair M. Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J. Agric. Food Chem. 2005. 53(1): 28—31. https://doi.org/10.1021/jf049018+

Fimognari C., Berti F., Nusse M., Cantelli-Forti G., Hrelia P. Induction of apoptosis in two human leukemia cell lines as well as differentiation in human promyelocytic cells by cyanin-3-O-beta-glucopyranoside. Biochem. Pharmacol. 2004. 67(11): 2047—2056. https://doi.org/10.1016/j.bcp.2004.02.021

Kang S., Seeram N., Nair M., Bourquin L. Tart cherry anthocyanins inhibit tumor development in Apc (Min) mice and reduce proliferation of human colon cancer cells. Cancer Lett. 2003. 194(1): 3—19. https://doi.org/10.1016/s0304-3835(02)00583-9

Sangsefidi Z., Hasanizadeh S., Hosseinzadeh M. Effect of purified anthocyanins or anthocyanin-rich extracts on C-reactive protein levels: a systematic review and meta-analysis of randomised clinical trials. British J. Nutr. 2018. 120(12): 1406—1414. https://doi.org/10.1017/s0007114518002957

Kalt W., Blumberg J., McDonald J. Identification of anthocyanins in the liver, eye and brain of blueberry-fed pigs. J. Agric. Food Chem. 2008. 56(3): 705—712. https://doi.org/10.1021/jf071998l

Matsumoto H., Nakamura Y., Iida H., Ito K., Ohguro H. Comparative assessment of distribution of blackcurrant anthocyanins in rabbit and rat ocular tissues. Exp. Eye Res. 2006. 83(2): 348—356. https://doi.org/10.1016/j.exer.2005.12.019

Matsumoto M., Hara H., Chiji H., Kasai T. Gastroprotective effect of red pigments in black chokeberry fruit (Aronia melanocarpa Elliot) on acute gastric hemorrhagic lesions in rats. J. Agric. Food Chem. 2004. 52(8): 2226—2229. https://doi.org/10.1021/jf034818q

Canter P., Ernst E. Anthocyanosides of Vaccinium myrtillus (bilberry) for night vision — a systematic review of placebo-controlled trials. Therapeutic Review. 2004. 49(1): 38—50. https://doi.org/10.1016/j.survophthal.2003.10.006

Akhmadieva A., Zaichkina S., Ruzieva R., Ganassi E. The protective action of a natural preparation of anthocyanin (pelargonidin-3,5-diglucoside). Radiobiologiia. 1993. 33(3): 433—435.

Herrero J., Frutos M. Effect of concentrated plum juice on physicochemical and sensory properties of yoghurt made at bench top scale. Int. J. Dairy Technol. 2014. 67(1): 123—128. https://doi.org/10.1111/1471-0307.12101

Bueno J., Plaza S., Escudero R., Jimenez A., Fett R., Asuero A. Analysis and antioxidant capacity of anthocyanin pigments. Part II: Chemical structure, color, and intake of anthocyanins. Critical Reviews in Analytical Chemistry. 2012. 42(2): 126—151. https://doi.org/10.1080/10408347.2011.632314

Dang Y., Li Z., Yu F. Recent advances in astaxanthin as an antioxidant in food applications. Antioxidants. 2024. 13(7): 879. https://doi.org/10.3390/antiox13070879

Pozniak C., Knox R., Clarke F., Clarke J. Identification of QTL and association of phytoene synthase gene with endosperm color in durum wheat. Theor. Appl. Genet. 2007. 114: 525—537. https://doi.org/10.1007/s00122-006-0453-5

Zhang W., Dubcovsky J. Association between allelic variation at the phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor. Appl. Genet. 2008. 116: 635—645. https://doi.org/10.1007/s00122-007-0697-8

Guo Z.F., Zhang Z.B., Xu P., Guo Y.N. Analysis of nutrient composition of purple wheat. Cereal Res. Commun. 2013. 41: 293—303. https://doi.org/10.1556/crc.2012.0037

Jeewani D., Nishantha M. Blue wheat: genetics, healthy value and food processing. Sch. J. Agric. Vet. Sci. 2018. 5(4): 230—235. https://doi.org/10.21276/sjavs.2018.5.4.7

Guo Z., Xu P., Zhang Z., Guo Y. Segregation ratios of colored grains in F1 hybrid wheat. Crop Breeding and Applied Biotechnology. 2012. 12(2): 126—131. https://doi.org/10.1590/s1984-70332012000200005

Song E.-S., Park S.-J., Woo N.-R.-A., Won M.-H. Antioxidant capacity of colored barley extracts by varieties. J. Korean Soc. Food Sci. Nutr. 2005. 34(10): 1491—1497. https://doi.org/10.3746/jkfn.2005.34.10.1491

Kim M.-J., Hyun J.-N., Kim J.-A., Park J.-C., Kim M.-Y., Kim J.-G., Lee S.-J., Chun S.-C., Chung I.-M. Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J. Agric. Food Chem. 2007. 55: 4802—4809. https://doi.org/10.1021/jf0701943

Sherman J., Souza E., See D., Talbert L.E. Microsatellite markers for kernel color genes in wheat. Crop Science. 2008. 48: 1419—1424. https://doi.org/10.2135/cropsci2007.10.0561

Garg M., Kaur S., Sharma A. et al. Rising demand for healthy foods-anthocyanin biofortified colored wheat is a new research trend. Front. Nutr. 2022. 9: 1—23. https://doi.org/10.3389/fnut.2022.878221

Zeller E., Cermefio M., Miller T. Cytological analysis on the distribution and origin of the alien chromosome pair conferring blue aleurone color in several European common wheat (Triticum aestivum L.) strains. Theor. Appl. Genet. 1991. 81: 551—558. https://doi.org/10.1007/978-3-476-03295-9_6

Keppenne V., Baenziger P. Inheritance of the blue aleurone trait in diverse wheat crosses. Genome. 1990. 33: 525—529. https://doi.org/10.4337/9781788972345.00009

Singh K., Ghai M., Garg M., Chhuneja P., Kaur P., Schnurbusch T., Keller B., Dhaliwal H.S. An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum × T. monococcum RIL population. Theor. Appl. Genet. 2007. 115: 301—312. https://doi.org/10.1007/s00122-007-0543-z

Knievel D., Abdel-Aal E., Rabalski I., Nakamura T., Hucl P. Grain color development and the inheritance of high anthocyanin blue aleurone and purple pericarp in spring wheat (Triticum aestivum L.). J. Cereal Sci. 2009. 50(3): 113—120. https://doi.org/10.1016/j.jcs.2009.03.007

Zeven A.C. Wheats with purple and blue grains — a review. Euphytica. 1991. 56: 243—258. https://doi.org/10.1007/bf00042371

Dubcovsky J., Luo M., Zhong G., Bransteitter R., Desai A., Kilian A., Kleinhofs A., Dvorak J. Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics. 1996. 143: 983—988. https://doi.org/10.1093/genetics/143.2.983

Shen Y., She J., Dawadondup Z., Wang Y., Pu J., Feng Y., Chu C., Wang X., Qi Z. Physical localization of a novel blue-grained gene derived from Thinopyrum bessarabicum. Molecular Breeding. 2013. 31: 195—200. https://doi.org/10.1007/s11032-012-9783-y

Li W., Shan F., Sun S., Corke H., Beta T. Free radical scavenging properties and phenolic content of Chinese black-grained wheat. J. Agric. Food Chem. 2005. 53(22): 8533—8538. https://doi.org/10.1021/jf051634y

Garg M., Chawla M., Chunduri V., Kumar R., Sharma S., Sharma N., Kaur N., Kumar A., Mundey J., Saini M., Singh S. Transfer of grain colors to elite wheat cultivars and their characterization. J. Cereal Sci. 2016. 71: 138—144. https://doi.org/10.1016/j.jcs.2016.08.004

Rivas-Gonzalo J.C. Analysis of anthocyanins. In: Saltmarsh M., Santos-Buelga C., Williamson G. (eds). Methods in Polyphenol Analysis. Royal Society of Chemistry, London, 2003. P. 338—358.

Finch R., Simpson E. New colors and complementary color genes in barley. Zeitschrift fur Pflanzenzuchtung. 1978. 81(1): 40—53.

Shim J., Suh S.J. Linkage relationship of blue aleurone genes (Bl's) in barley. In: Yasuda S., Konishi T. (eds). Barley Genetics V. Proc. Fifth Int. Barley Genet. Symp. Okayama, Sanyo Press Co., 1986. P. 213—217.

Zhang X.-W., Jiang Q.-T., Wei Y.-M., Liu C. Inheritance analysis and mapping of quantitative trait loci (QTL) controlling individual anthocyanin compounds in purple barley (Hordeum vulgare L.) grains. Plos One. 2017. https://doi.org/10.1371/journal.pone.0183704

Jia Q., Wang J., Zhu J., Hua W., Shang Y., Yang J. Toward identification of black lemma and pericarp gene Blp1 in barley combining bulked segregant analysis and specific-locus amplified fragment sequencing. Front. Plant Sci. 2017. 8: 1414. https://doi.org/10.3389/fpls.2017.01414

Harlan H.V. Some distinctions in our cultivated barleys with reference to their use in plant breeding. Washington, Govt. Print. Off., 1914. https://doi.org/10.5962/bhl.title.37224

Siebenhandl S., Grausgruber H., Pellegrini N., Del Rio D., Fogliano V., Pernice R. Phytochemical profile of main antioxidants in different fractions of purple and blue wheat, and black barley. J. Agric. Food Chem. 2007. 55(21): 8541—8547. https://doi.org/10.1021/jf072021j

Bird A., Flory C., Davies D., Usher S., Topping D. A novel barley cultivar (Himalaya 292) with a specific gene mutation in starch synthase IIa raises large bowel starch and short-chain fatty acids in rats. J. Nutr. 2004. 134(4): 831—835. https://doi.org/10.1093/jn/134.4.831

Bird A., Jackson M., King R., Davies D., Usher S., Topping D. A novel high-amylose barley cultivar (Hordeum vulgare var. Himalaya 292) lowers plasma cholesterol and alters indices of large-bowel fermentation in pigs. British J. Nutr. 2004. 92(4): 607—615. https://doi.org/10.1079/BJN20041248

Clarke B., Liang R., Morell M., Bird A., Jenkins C., Li Z. Gene expression in a starch synthase IIa mutant of barley: changes in the level of gene transcription and grain composition. Funct. Integr. Genomics. 2008. 8: 211—221. https://doi.org/10.1007/s10142-007-0070-7

Berdanier C., Dwyer J., Herber D. Handbook of Nutrition and Food. CRC Press, 2013. https://doi.org/10.1201/b15294

Rosell С., Barro F., Sousa C., Mena C. Cereals for developing gluten-free products and analytical tools for gluten detection. J. Cereal Sci. 2014. 59(3): 354—364. https://doi.org/10.1016/J.JCS.2013.10.001

Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutrition Research Reviews. 2010. 23(1): 65—134. https://doi.org/10.1017/s0954422410000041

Truswell A. Cereal grains and coronary heart disease. Eur. J. Clin. Nutr. 2002. 56: 1—14. https://doi.org/10.1038/sj.ejcn.1601283

Published

2025-07-31