The Maxwell modified method of determination of effective constants of heterogeneous materials

Authors

  • V.I. Kushch V.N. Bakul Institute for Superhard Materials of the NAS of Ukraine, Kiev
  • A.L. Maystrenko V.N. Bakul Institute for Superhard Materials of the NAS of Ukraine, Kiev
  • V.S. Chernobai V.N. Bakul Institute for Superhard Materials of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2017.02.035

Keywords:

composite, dipole moment, effective constants, Maxwell method

Abstract

The Maxwell modified method of determination of effective constants is formulated in terms of the dipole moments of a real piece of a composite and the equivalent inclusion. The method is rigorous in the sense that the evaluation of an effective constant converges to the exact value with increasing the cluster size. For example, the problem of determining the thermal conductivity of a fiber composite shows that the method provides the calculation of effective constants with high accuracy for composites with periodic or disordered micro structure.

Downloads

Download data is not yet available.

References

Maxwell, J. C. (1892.). A treatise on electricity and magnetism. Vol. 1. Oxford: Clarendon Press.

Kachanov, M. and Sevostianov, I., (Eds.). (2013). Effective Properties of Heterogeneous Materials. Berlin: Springer. https://doi.org/10.1007/978-94-007-5715-8

Milton, G. W. (2002). The Theory of Composites. Cambridge: Cambridge Univ. Press. https://doi.org/10.1017/CBO9780511613357

Mogilevskaya, S. G., Crouch, S. L., Stolarski, H. K., Benusiglio, A. (2010). Int. J. Solids and Structures. 47, pp. 407-418. https://doi.org/10.1016/j.ijsolstr.2009.10.007

Mogilevskaya, S. G., Stolarski, H. K., Crouch, S. L. (2012).J. of Mech. and Phys. of Solids, 60, pp. 391-417. https://doi.org/10.1016/j.jmps.2011.12.008

Mogilevskaya, S. G., Kushch, V. I., Koroteeva, O., Crouch, S. L. (2012).J. Mech. Mater. and Struct., 7, pp. 103-117. https://doi.org/10.2140/jomms.2012.7.103

Kushch, V. I., Sevostianov, I. (2016). Int. J. Eng. Sci., 98, pp. 36-50. https://doi.org/10.1016/j.ijengsci.2015.07.003

Landau, L. D., Lifshitz, E. M. (2001). Theory of Fields. Izd. 8-e, stereot. Moscow, Fismatlit (in Russian).

Kushch, V. I., Sevostianov, I. (2014). Int. J. Eng. Sci., 74, pp. 15-34. https://doi.org/10.1016/j.ijengsci.2013.08.002

Golovchan, V. T., Guz, A. N., Kohanenko, Yu. V., Kushch, V. I. (1993). Mechanics of composites. Vol. 1. Kyiv: Naukova Dumka (in Russian).

Kushch, V. I. (2013). Micromechanics of composites: multipole expansion approach. Amsterdam, Elsevier.

Avelin, J., Sharma, R., Hanninen, I., Sihvola, A. H. (2001). IEEE Transactions on antennas and propagation, 49, pp. 451-457. https://doi.org/10.1109/8.918620

Perrins, W. T., McKenzie, D. R., McPhedran, R. C. (1979). Proc. of Royal Society of London. Ser. A, 369, pp. 207-225. https://doi.org/10.1098/rspa.1979.0160

Cheng, H., Greengard, L. (1997).J. Computational Physics, 136, pp. 629-639. https://doi.org/10.1006/jcph.1997.5787

Published

22.05.2024

How to Cite

Kushch, V., Maystrenko, A., & Chernobai, V. (2024). The Maxwell modified method of determination of effective constants of heterogeneous materials . Reports of the National Academy of Sciences of Ukraine, (2), 35–41. https://doi.org/10.15407/dopovidi2017.02.035