The Newton—Kantorovich method in the theory of autonomous Noetherian boundary-value problems in the case of parametric resonance

Authors

  • S.M. Chuiko Donbas State Pedagogical University, Slov’yansk
  • O.V. Nesmelov Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slov’yansk

DOI:

https://doi.org/10.15407/dopovidi2019.12.003

Keywords:

case of parametric resonance, Duffing-type equation, nonlinear autonomous boundary-value problem

Abstract

We have found constructive conditions of solvability and a convergent iterative scheme for constructive solutions of a nonlinear autonomous Noetherian boundary-value problem in the case of parametric resonance. As an example of applying the scheme, some approximations to the solution of a periodic boundary-value problem for an autonomous equation of the Duffing type with a parametric perturbation are determined. To control the accuracy of the approximations, residuals in the original equation are applied.

Downloads

Download data is not yet available.

References

Boichuk, A. A. & Samoilenko, A. M. (2016). Generalized inverse operators and Fredholm boundary-value problems, 2-th edition. Berlin; Boston: De Gruyter. Doi: https://doi.org/10.1515/9783110378443

Malkin, I. G. (1956). Some problems of the theory of nonlinear oscillations. Moscow: Gostekhizdat (in Russian).

Boichuk, A. & Chuiko, S. (1992). Autonomous Weakly Nonlinear Boundary Value Problems in Critical Cases. Diff. Equations, 10, pp. 1353-1358.

Mandelstam, L. I. & Papaleksi, N. D. (1934). On the parametric excitation of electrical vibrations. Zhurn. tech. Phys., 3, pp. 5-29 (in Russian).

Chuiko, S. M. (2015). Nonlinear Noetherian boundary-value problem in the case of parametric resonance. J. Math. Sci. (N.Y.), 205, No. 6, pp. 859-870. Doi: https://doi.org/10.1007/s10958-015-2289-5

Yakubovich, V. A. & Starzhinsky, V. M. (1987). Parametric resonance in linear systems. Moscow: Nauka (in Russian).

Grebenikov, E. A. & Ryabov, Yu. A. (1972). Constructive methods of analysis of nonlinear systems. Moscow: Nauka (in Russian).

Chuiko, S. M.& Kulish, P. V. (2012). Linear Noetherian boundary value problem in the case of parametric resonance. Trudy IPMM NAN Ukrainy. 24, pp. 243-252 (in Russian).

Kantorovich, L. V. & Akilov, G. P. (1977). Functional analysis. Moscow: Nauka (in Russian).

Chuiko, S. M. (2017). To the generalization of the Newton—Kantorovich theorem. Visnyk of V.N. Ka razin Kharkiv Nat. Univ. Ser. math., appl. mathematics and mechanics. 85, No. 1, pp. 62-68.

Boichuk, A. A. & Krivosheya, S. A. (2001). A Critical Periodic Boundary Value Problem for a Matrix Riccati Equation. Diff. Equations, 37, No. 4, pp. 464-471. Doi: https://doi.org/10.1023/A:1019267220924

Chuiko, S. M. (2015). The Green’s operator of a generalized matrix linear differential-algebraic boundary value problem. Siber. Math. J., 56, No. 4, pp. 752-760. Doi: https://doi.org/10.1134/S0037446615040175

Gutlyanskii, V. & Ryazanov, V. & Yefimushkin, A. (2016). On the boundary-value problems for quasiconformal functions in the plane. J. Math. Sci., 214, pp. 200-219. Doi: https://doi.org/10.1007/s10958-016-2769-2

Skrypnik, I. I. (2016). Removability of isolated singularities for anisotropic elliptic equations with gradient absorption. Israel J. Math., 215, No. 1, pp. 163-179. Doi: https://doi.org/10.1007/s11856-016-1377-7

Published

24.04.2024

How to Cite

Chuiko, S., & Nesmelov, O. (2024). The Newton—Kantorovich method in the theory of autonomous Noetherian boundary-value problems in the case of parametric resonance . Reports of the National Academy of Sciences of Ukraine, (12), 3–12. https://doi.org/10.15407/dopovidi2019.12.003