A generalization of the Newton-Kantorovich method for systems of nonlinear real equations

Authors

  • S.M. Chuiko Donbas State Pedagogical University

DOI:

https://doi.org/10.15407/dopovidi2020.03.003

Keywords:

half-inverse matrix, matrix pseudoinverse by Moore—Penrose, modification of Newton—Kantorovich method, nonlinear real equations

Abstract

Constructive conditions for the solvability and an iterative scheme of finding the solutions of systems of nonli near real equations in the case of a Jacobian with constant rank are obtained. The results are a generalization of the Newton-Kantorovich method for systems of nonlinear real equations, the number of components of which does not coincide with the number of the unknowns.

Downloads

Download data is not yet available.

References

Kantorovich, L. V. & Akilov, G. P. (1977). Functional analysis. Moscow: Nauka (in Russian).

Boichuk, A. A. & Samoilenko, A. M. (2016). Generalized inverse operators and Fredholm boundary-value problems. 2th ed. Berlin, Boston: De Gruyter. Doi: https://doi.org/10.1515/9783110378443

Chuiko, S. M. (2018). A generalization of the Newton—Kantorovich theorem in a Banakh space. Dopov. Nac. akad. nauk Ukr., No. 6, pp. 22-31 (in Ukrainian). Doi: https://doi.org/10.15407/dopovidi2018.06.022

Dennis, J. E. & Schnabel, R. B. (1996). Numerical methods for unconstrained optimization and nonlinear equations. Colorado: Society for Industrial and Applied Mathematics. Doi: https://doi.org/10.1137/1.9781611971200

Polyak, B. T. (2006). Newton’s method and its role in optimization and computational mathematics. Trudy ISA RAN, 28, pp. 48-66 (in Russian).

Chuiko, S. M. & Boichuk, I. A. (2009). Autonomous Noetherian boundary-value problem in the critical case. Nonlinear Oscillations, 12, No. 3, pp. 417-428. Doi: https://doi.org/10.1007/s11072-010-0085-1

Chuiko, S. M., Boichuk, I. A. & Pirus, O. E. (2013). On the approximate solution of an autonomous boundary-value problem by the Newton—Kantorovich method. J. Math. Sci., 189, No. 5, pp. 867-881. Doi: https://doi.org/10.1007/s10958-013-1225-9

Chuiko, S. M. & Pirus O. E. (2013). On the approximate solution of autonomous boundary-value problems by the Newton method. J. Math. Sci., 191, No. 3, pp. 449-463. Doi: https://doi.org/10.1007/s10958-013-1329-2

Ben-Israel, A. (1966). A Newton—Raphson method for the solution of systems of equations. J. Math. Anal. Appl., 15, pp. 243-252. Doi: https://doi.org/10.1016/0022-247X(66)90115-6

Chuiko, S. M. (2017). To the generalization of the Newton—Kantorovich theorem. Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics And Mechanics. 85, No. 1, pp. 62-68.

Arnold, V. I., Gusein-Zade, S. M. & Varchenko, A. N. (2012). Singularities of differentiable maps. Boston: Birkhauser. Vols. 1, 2. Doi: https://doi.org/10.1007/978-0-8176-8343-6

Chuiko, S. M. (2018). On a reduction of the order in a differential-algebraic system. J. Math. Sci., No. 1, pp. 2-14. Doi: https://doi.org/10.1007/s10958-018-4054-z

Ben-Israel, A. & Greville, Th.N.E. (2003). Generalized inverses : theory and applications. 2nd ed. New York: Springer.

Chuiko, S. M., Chuiko, O. S. & Chechetenko, V. O. (2018). On of solving nonlinear Noether integral-differential boundary value problems by the of Newton—Kantorovich method. Nauk. Visnyk Uzhgorod Univ. Ser. Matematyka i Informatyka, No. 1, pp. 147-158.

Published

28.03.2024

How to Cite

Chuiko, S. . (2024). A generalization of the Newton-Kantorovich method for systems of nonlinear real equations . Reports of the National Academy of Sciences of Ukraine, (3), 3–9. https://doi.org/10.15407/dopovidi2020.03.003