LAGRANGE FUNCTION FOR THE LAYERED SUPERCONDUCTOR SAMPLES OF FINITE SIZE
DOI:
https://doi.org/10.15407/dopovidi2024.01.013Keywords:
Lagrange function, layered superconductor, waveguide, ordinary and extraordinary modes, dispersion relationAbstract
The theoretical investigation of Josephson plasma wave propagation in confined samples of a layered superconductor was conducted using the Lagrangian approach. Based on fundamental experimental results, an expression for the Lagrange function governing the coupled degrees of freedom of the order parameter phase in the layers of the sample and the electromagnetic field was derived. It is shown that, in k-space, the Lagrange function represents of a counted set of independent contributions corresponding to various possible waveguide modes in the sample, categorized as ordinary and extraordinary modes. Dispersion dependences for the modes were obtained. The results of this study can be applied to the construction of electronic devices in the Terahertz frequency range.
Downloads
References
Gabriele, F., Castellani, C. & Benfatto, L. (2022). Generalized plasma waves in layered superconductors: A unified approach. Phys. Rev. Res., 4, Iss. 2, pp. 023112. https://doi.org/10.1103/PhysRevResearch.4.023112
De Palo, S., Castellani, C., Di Castro, C. & Chakraverty, B. K. (1999). Effective action for superconductors and BCS-Bose crossover. Phys. Rev. B., 60, Iss. 1, pp. 564. https://doi.org/10.1103/PhysRevB.60.564
Kleiner, R., Steinmeyer, F., Kunkel, G. & Muller, P. (1992). Intrinsic Josephson effects in Bi2Sr2CaCu2O8+
single crystals. Phys. Rev. Lett., 68, Iss. 15, pp. 2394. https://doi.org/10.1103/PhysRevLett.68.2394
Savel’ev, S., Yampol’skii, V. A., Rakhmanov, A. L. & Nori, F. (2010). Terahertz Josephson plasma waves in layered superconductors: spectrum generation nonlinear and quantum phenomena. Rep. Prog. Phys., 73, No. 2, pp. 026501. https://doi.org/10.1088/0034-4885/73/2/026501
Ovcharenko, H. V., Maizelis, Z. A., Apostolov, S. S. & Yampol’skii, V. A. (2022). Nonlinear focusing of terahertz laser beam using a layered superconductor. Phys. Rev. B., 106, Iss. 17, pp. 174511. https://doi.org/10.1103/PhysRevB.106.174511
Rokhmanova, T., Apostolov, S. S., Kvitka, N. & Yampol’skii, V. A. (2018). Effect of a dc magnetic field on the anomalous dispersion of localized Josephson plasma modes in layered superconductors. Low Temp. Phys., 44, No. 6, pp. 552. https://doi.org/10.1063/1.5037558
Apostolov, S. S., Maizelis, Z. A., Sorokina, M. A., Yampol’skii, V. A. & Nori, F. (2010). Self-induced tunable transpa- rency in layered superconductors. Phys. Rev. B., 82, Iss. 14, pp. 144521. https://doi.org/10.1103/PhysRevB.82.144521
Anderson, P. W. (1958). Random-Phase Approximation in the Theory of Superconductivity. Phys. Rev., 112, Iss. 6, pp. 1900. https://doi.org/10.1103/PhysRev.112.1900
Apostolov, S. S., Rokhmanova, T. N., Khankina, S. I., Yakovenko, V. M.& Yampol’skii, V. A.(2012). Transformation of the polarization of THz waves by their reflection and transmission through a finite layered superconductor. Low Temp. Phys., 38, Iss. 9, pp. 880. https://doi.org/10.1063/1.4747706
Sakai, S., Bodin, P. & Pedersen, N. F. (1993). Fluxons in thin-film superconductor-insulator superlattices. J. Appl. Phys., 73, Iss. 5, pp. 2411. https://doi.org/10.1063/1.353095
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.