Perspectives of introducing aryl substituents into 1,3-functionalized cyclobutane ring by C - C cross-coupling reactions of trifluoroborates

Authors

  • O.V. Hryshchuk Taras Shevchenko National University of Kyiv
  • A.V. Tymtsunik Igor Sikorsky Kyiv Polytechnic Institute
  • V.S. Moskvina Taras Shevchenko National University of Kyiv
  • O.O. Grygorenko Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/dopovidi2020.05.061

Keywords:

cyclobutane, organoboron compounds, photoredox coupling, small carbocycles, Suzuki—Miyaura reaction, trifluoroborates

Abstract

Preparative procedures for the synthesis of 1,3-functionalized cyclobutane-containing trifluoroborates bearing a protected amino- or carboxylic group are developed. The method included the reduction of the corresponding 3-functionalized cyclobutanones (i.e. tert-butyl (3-oxocyclobutyl)carbamate and methyl 3-oxocyclo butanecarboxylate) with sodium borohydride in methanol, giving the corresponding secondary alcohols. Their further Appel reaction with tetrabromomethane and triphenylphosphine provides 1,3-functionalized cyclobutane- derived bromides (57 and 43 % for two steps, respectively). The reaction of these bromides with bis(pinacolato) diboron in the presence of copper (I) bromide — triphenylphosphine complex and lithium tert-butylate, followed by treatment with potassium hydrofluoride gives the target trifluoroborates (63 and 47 % for two steps, respectively). These products are obtained with moderate diastereoselectivity (dr = 2 : 1 to 3 : 1). For the case of coupling with bromobenzene, it is shown that the obtained derivatives do not undergo the Suzuki—Miyaura reaction neither with classical tetrakis(triphenylphosphino)palladium (no reaction occurs) nor even upon the application of highly active palladium catalysts based on di(1-adamantyl)(n-butyl)phosphine (CataXCium® A) (a complex mixture of products is formed, presumably due to the β-elimination in intermediate palladium complexes). Nevertheless, the photoredox coupling is possible in the presence of dual nickel-iridium catalyst (namely, iridium complex with the 3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl]phenyl (dF(CF3)ppy) and 4,4′-ditert- butyl-2,2′-dipyridyl (dtbpy) ligands, [Ir{dF(CF3)ppy}2(dtbpy)]PF6, as well as nickel complex, Ni(1,2-dimethoxyethane) Cl2 — dtbpy) in the presence of cesium carbonate upon irradiation with a fluorescent lamp, which gives the target products after the removal of the protective groups in 32—43 % yield (per two steps). It is shown that, unlike for 1,2-difunctionalized cyclobutane derivatives, the C—C coupling in the case of 1,3-isomers occurs without any diastereoselectivity (dr = 1 : 1).

Downloads

Download data is not yet available.

References

Grygorenko, O. O., Volochnyuk, D. M., Ryabukhin, S. V. & Judd, D. B. (2020). The Symbiotic relationship between drug discovery and organic chemistry. Chem. Eur. J., 26, No. 6, pp. 1196-1237. Doi: https://doi.org/10.1002/chem.201903232

Mitton-Fry, M. J., Brickner, S. J., Hamel, J. C., Brennan, L., Casavant, J. M., Chen, M., Chen, T., Ding, X., Driscoll, J., Hardink, J., Hoang, T., Hua, E., Huband, M. D., Maloney, M., Marfat, A., McCurdy, S. P., McLeod, D., Plotkin, M., Reilly, U., Robinson, S., Schafer, J., Shepard, R. M., Smith, J. F., Stone, G. G., Subramanyam, C., Yoon, K., Yuan, W., Zaniewski, R. P. & Zook, C. (2013). Novel quinoline derivatives as inhibitors of bacterial DNA gyrase and topoisomerase IV. Bioorg. Med. Chem. Lett., 23, No. 10, pp. 2955-2961. Doi: https://doi.org/10.1016/j.bmcl.2013.03.047

Łażewska, D., Kaleta, M., Schwed, J. S., Karcz, T., Mogilski, S., Latacz, G., Olejarz, A., Siwek, A., Kubacka, M., Lubelska, A., Honkisz, E., Handzlik, J., Filipek, B., Stark, H. & Kieć-Kononowicz, K. (2017). Biphenyloxyalkyl- piperidine and azepane derivatives as histamine H3 receptor ligands. Bioorg. Med. Chem., 25, No. 20, pp. 5341-5354. Doi: https://doi.org/10.1016/j.bmc.2017.07.058

Demchuk, O. P., Hryshchuk, O. V., Vashchenko, B. V., Radchenko, D. S., Kovtunenko, V. O., Komarov, I. V. & Grygorenko, O. O. (2019). Robust and scalable approach to 1,3-disubstituted pyridylcyclobutanes. Eur. J. Org. Chem., No. 34, pp. 5937-5949. Doi: https://doi.org/10.1002/ejoc.201901001

Molander, G. A. & Gormisky, P. E. (2008). Cross-coupling of cyclopropyl- and cyclobutyltrifluoroborates with aryl and heteroaryl chlorides. J. Org. Chem., 73, No. 19, pp. 7481-7485. Doi: https://doi.org/10.1021/jo801269m

Molander, G. A., Colombel, V. & Braz, V. A. (2011). Direct alkylation of heteroaryls using potassium alkyland alkoxymethyltrifluoroborates. Org. Lett., 13, No. 7, pp. 1852-1855. Doi: https://doi.org/10.1021/ol2003572

Lennox, A. J. J. & Lloyd-Jones, G. C. (2012). Organotrifluoroborate hydrolysis: Boronic acid release mechanism and an acid-base paradox in cross-coupling. J. Am. Chem. Soc., 134, No. 17, pp. 7431-7441. Doi: https://doi.org/10.1021/ja300236k

Primer, D. N., Karakaya, I., Tellis, J. C. & Molander, G. A. (2015). Single-electron transmetalation: an enabling technology for secondary alkylboron cross-coupling. J. Am. Chem. Soc., 137, No. 6, pp. 2195-2198. Doi: https://doi.org/10.1021/ja512946e

DeLano, T. J., Bandarage, U. K., Palaychuk, N., Green, J. & Boyd, M. J. (2016). Application of the photoredox coupling of trifluoroborates and aryl bromides to analog generation using continuous flow. J. Org. Chem., 81, No. 24, pp. 12525-12531. Doi: https://doi.org/10.1021/acs.joc.6b02408

Li, G.-X., Morales-Rivera, C. A., Wang, Y., Gao, F., He, G., Liu, P. & Chen, G. (2016). Photoredox-mediated Minisci C—H alkylation of N-heteroarenes using boronic acids and hypervalent iodine. Chem. Sci., 7, No. 10, pp. 6407-6412. Doi: https://doi.org/10.1039/C6SC02653B

Giustra, Z.X., Yang, X., Chen, M., Bettinger, H.F. & Liu, S.Y. (2019). Accessing 1,2-substituted cyclobutanes through 1,2-azaborine photoisomerization. Angew. Chem. Int. Ed., 58, No. 52, pp. 18918-18922. Doi: https://doi.org/10.1002/anie.201912132

Sun, X., Rai, R., Deschamps, J. R., Mackerell, A. D., Faden, A. I. & Xue, F. (2014). Boc-protected 1-(3- oxocycloalkyl)ureas via a one-step Curtius rearrangement: mechanism and scope. Tetrahedron Lett., 55, No. 4, pp. 842-844. Doi: https://doi.org/10.1016/j.tetlet.2013.12.021

Radchenko, D.S., Pavlenko, S.O., Grygorenko, O.O., Volochnyuk, D.M., Shishkina, S. V., Shishkin, O. V. & Komarov, I. V. (2010). Cyclobutane-derived diamines: synthesis and molecular structure. J. Org. Chem., 75, No. 17, pp. 5941-5952. Doi: https://doi.org/10.1021/jo101271h

Published

28.03.2024

How to Cite

Hryshchuk, O. ., Tymtsunik, A. ., Moskvina, V. ., & Grygorenko, O. . (2024). Perspectives of introducing aryl substituents into 1,3-functionalized cyclobutane ring by C - C cross-coupling reactions of trifluoroborates . Reports of the National Academy of Sciences of Ukraine, (5), 61–69. https://doi.org/10.15407/dopovidi2020.05.061

Most read articles by the same author(s)