On boundary-value problems for generalized analytic and harmonic functions
DOI:
https://doi.org/10.15407/dopovidi2020.12.011Keywords:
generalized analytic functions, generalized harmonic functions, logarithmic capacity and potential, Poincaré and Neumann boundary-value problemsAbstract
The present paper is a natural continuation of our last articles on the Riemann, Hilbert, Dirichlet, Poincaré, and, in particular, Neumann boundary-value problems for quasiconformal, analytic, harmonic functions and the so-called A-harmonic functions with arbitrary boundary data that are measurable with respect to the logarithmic capacity. Here, we extend the corresponding results to generalized analytic functions :h D → С with sources :g : ∂z-h = g ∈ Lp , p > 2 , and to generalized harmonic functions U with sources G : ΔU =G ∈Lp , p > 2 . Our approach is based on the geometric (functional-theoretic) interpretation of boundary values in comparison with the classical operator ap- proach in PDE. Here, we will establish the corresponding existence theorems for the Poincaré problem on direc- tional derivatives and, in particular, for the Neumann problem to the Poisson equations U GΔ = with arbitrary boundary data that are measurable with respect to the logarithmic capacity. A few mixed boundary-value problems are considered as well. These results can be also applied to semilinear equations of mathematical physics in aniso- tropic and inhomogeneous media.
Downloads
References
Gutlyanskii, V.Ya., Nesmelova, O.V., Ryazanov, V.I. & Yefimushkin, A.S. (2020). Logarithmic capacity and Riemann and Hilbert problems for generalized analytic functions. Dopov. Nac. akad. nauk Ukr., No. 8. pp. 11-18. https://doi.org/10.15407/dopovidi2020.08.011
Luzin, N. N. (1915). Integral and trigonometric series. (Unpublished Doctor thesis). Moscow University, Moscow, Russia (in Russian).
Luzin, N. N. (1951). Integral and trigonometric series. Editing and commentary by Bari, N. K. & Men’shov, D.E. Moscow, Leningrad: Gostehteoretizdat (in Russian).
Efimushkin, A. S. & Ryazanov, V. I. (2015). On the Riemann-Hilbert problem for the Beltrami equations in quasidisks. J. Math. Sci., 211, No. 5, pp. 646-659. https://doi.org/10.1007/s10958-015-2621-0
Yefimushkin, A. & Ryazanov, V. (2016). On the Riemann-Hilbert problem for the Beltrami equations. In Complex analysis and dynamical systems VI. Part 2 (pp. 299-316). Contemporary Mathematics, 667. Israel Math. Conf. Proc. Providence, RI: Amer. Math. Soc. https://doi.org/10.5186/aasfm.2020.4552
Gutlyanskii, V., Nesmelova, O. & Ryazanov, V. (2019). To the theory of semilinear equations in the plane. J. Math. Sci., 242, No. 6, pp. 833-859. https://doi.org/10.1007/s10958-019-04519-z
Sobolev, S. L. (1963). Applications of functional analysis in mathematical physics. Providence, R.I.: AMS.
Bagemihl, F. & Seidel, W. (1955). Regular functions with prescribed measurable boundary values almost everywhere. Proc. Nat. Acad. Sci. USA, 41, pp. 740-743. https://doi.org/10.1073/pnas.41.10.740
Vekua, I. N. (1962). Generalized analytic functions. London: Pergamon Press.
Gutlyanskii, V., Ryazanov, V. & Yefimushkin, A. (2016). On the boundary-value problems for quasiconformal functions in the plane. J. Math. Sci., 214, No. 2, pp. 200-219. https://doi.org/10.1007/s10958-016-2769-2
Gutlyanskii, V., Nesmelova, O. & Ryazanov, V. (2018). On quasiconformal maps and semilinear equations in the plane. J. Math. Sci., 229, pp. 7-29. https://doi.org/10.1007/s10958-018-3659-6
Gutlyanskii, V., Ryazanov, V., Yakubov, E. & Yefimushkin, A. (2020). On Hilbert boundary value problem for Beltrami equation. Ann. Acad. Sci. Fenn. Math., 45, pp. 957-973. https://doi.org/10.5186/aasfm.2020.4552
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.