Peculiarities of the development of hydrogels based on chitosan and poly(ethylene glycol) disuccinate at elevated temperature

Authors

  • O. Yu. Zholobko
  • I. T. Tarnavchyk
  • A. S. Voronov
  • O.G. Budishevska
  • A.M. Kohut
  • S.A. Voronov

DOI:

https://doi.org/10.15407/dopovidi2014.05.128

Keywords:

chitosan, elevated temperature, hydrogels

Abstract

The reaction of poly(ethylene glycol) disuccinates and 1-O-benzyl-2-amino-2-deoxy-D-glucopyranoside (1-benzylglucosamine), which resembles a repeating unit in a chitosan macromolecule, has been studied at an elevated temperature without additional activating agents and catalysts. The obtained results indicate that the interaction between the amino groups of 1-benzylglucosamine and the carboxylic groups of poly(ethylene glycol) disuccinates has led to the formation of covalent amide bonds. Simultaneously, the aminolysis reaction occurs as a result of the interaction between the ester groups of poly(ethylene glycol) disuccinates and the amino groups of chitosan, forming intermolecular amide bonds as well. New covalently cross-linked biocompatible hydrogels based on chitosan and poly(ethylene glycol) disuccinates have been synthesized. The polymeric scaffold of the hydrogels is formed through these reactions. The hydrogel properties (e. g., swelling, drug solubilization, and mechanical properties) could be controlled through the reagents concentration, as well as through the COOH/NH2 functional group ratio and the poly(ethylene glycol) chain length.

Downloads

References

Muzzarelli R. Natural chelating polymers. Oxford: Pergamon Press, 1973: 144–176.

Yao K., Li J., Yao F., Yin Y. Chitosan-based hydrogels. Functions and applications. Boca Raton: CRC Press, 2012.

Peniche C., Argüelles-Monal W., Peniche H., Acosta N. Macromol. Biosci., 2003, 3: 511–520. https://doi.org/10.1002/mabi.200300019

Bhattarai N., Li Z. S., Gunn J. et al. Adv. Mater., 2009, 21: 2792–2797. https://doi.org/10.1002/adma.200802513

Hu Y., Du Y., Yang J. et al. Polymer., 2007, 48: 3098–3106. https://doi.org/10.1016/j.polymer.2007.03.063

Hu F.-Q., Meng P., Dai Y.-Q. et al. Eur. J. Pharm. Biopharm., 2008, 70: 749–757. https://doi.org/10.1016/j.ejpb.2008.06.015

Bian F., Jia L., Yu W., Liu M. Carbohydr. Polym., 2009, 76: 454–459. https://doi.org/10.1016/j.carbpol.2008.11.008

Kirschner C. V., Anseth K. S. Acta Materialia, 2013, 61: 931–944. https://doi.org/10.1016/j.actamat.2012.10.037

Lee K. Y., Mooney D. J. Chem. Rev., 2001, 101: 1869–1879. https://doi.org/10.1021/cr000108x

Chen S.-H., Tsao C.-T., Chang C.-H. et al. Macromol. Mater. Eng., 2013, 298.: 429– 438. https://doi.org/10.1002/mame.201200054

Mi F.-L., Kuan C.-Y., Shyu S.-S. et al. Biomaterials, 2000, 41: 389–396.

Gupta K. C., Jabrail F. H. Carbohydr. Res., 2006, 341: 744–756. https://doi.org/10.1016/j.carres.2006.02.003

Welsh E. R., Price R. R. Biomacromolecules, 2003, 4: 1357–1361. https://doi.org/10.1021/bm034111c

Published

25.02.2025

How to Cite

Zholobko, O. Y., Tarnavchyk, I. T., Voronov, A. S., Budishevska, O., Kohut, A., & Voronov, S. (2025). Peculiarities of the development of hydrogels based on chitosan and poly(ethylene glycol) disuccinate at elevated temperature . Reports of the National Academy of Sciences of Ukraine, (5), 128–137. https://doi.org/10.15407/dopovidi2014.05.128