Asymptotic properties of the estimator of linear regression parameters in the case of weakly dependent regressors
DOI:
https://doi.org/10.15407/dopovidi2014.05.024Keywords:
ependent regressors, linear regressionAbstract
A linear regression model with weakly dependent random noise and time-dependent regressors which are observed with weakly dependent errors is considered. The consistency and the asymptotic normality of the least squares estimator of such a regression model are proved.
Downloads
References
Ivanov A. V., Leonenko N. N. Statistical analysis of random fields. Kyiv: Vyshcha shkola, 1986 (in Russian).
Ivanov A. V. Asymptotic theory of nonlinear regression. Dordrecht: Kluwer, 1997. https://doi.org/10.1007/978-94-015-8877-5
Dorogovtsev A. Ya. Theory of estimates of parameters of random processes. Kyiv: Vyshcha shkola,1982 (in Russian).
Golubovska L. P., Ivanov O. V., Orlovskii I. V. Nauk. visti NTUU “KPI”. 2012, No. 4(84): 26–33 (in Ukrainian).
Seneta E. Correctly changing functions. Moscow: Nauka, 1985 (in Russian).
Avram F., Leonenko N., Sakhno L. ESAIM: PS, 2010, 14: 210–255.
Lieb E. H. Inequalities: selecta of Elliott H. Lieb. Berlin: Springer, 2000.
Ibrahimov I. A., Rozanov Yu. A. Gaussian random processes. Moscow: Nauka, 1970 (in Russian).
Grenander U., Rosenblatt M. Statistical analysis of stationary time series. Stockholm: Almqvist and Wiksell, 1956.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.