Reduction of differential equations to algebraic ones

Authors

  • V.M. Boyko

DOI:

https://doi.org/10.15407/dopovidi2014.03.007

Keywords:

differential equations, reduction, singular modules

Abstract

In terms of singular reduction modules, i. e. singular modules of a nonclassical (conditional) symmetry, the question of reduction of differential equations to algebraic ones is studied.

Downloads

References

Bluman G. W., Cole J. D. J. Math. Mech., 1969, 18: 1025–1042.

Kunzinger M., Popovych R. O. J. Phys. A: Math. Theor., 2008, 41: 505201. https://doi.org/10.1088/1751-8113/41/50/505201

Kunzinger M., Popovych R. O. Is a nonclassical symmetry a symmetry? In: Proceedings of the 4th Workshop “Group Analysis of Differential Equations and Integrable Systems” Nicosia: University of Cyprus, 2009: 107–120.

Boyko V. M., Kunzinger M., Popovych R. O. Singular reduction modules of differential equations, arXiv: 1201.3223.

Fushchych W. I., Tsyfra I. M. J. Phys. A: Math. Gen., 1987, 20: L45–L48. https://doi.org/10.1088/0305-4470/20/2/001

Levi D., Winternitz P. J. Phys. A: Math. Gen., 1989, 22: 2915–2924. https://doi.org/10.1088/0305-4470/22/15/010

Fushchych W. I., Shtelen V. M., Serov N. I. Symmetry analysis and exact solutions of nonlinear equations of mathematical physics. Kyiv: Nauk. dumka, 1989 (in Russian).

Fushchych W. I., Zhdanov R. Z. Ukr. Math. J., 1992, 44: 875–886. https://doi.org/10.1007/BF01056141

Vorob’ev E. M. Acta Appl. Math., 1991, 51: 1–24. https://doi.org/10.1007/BF00046918

Olver P. J., Vorob’ev E. M. Nonclassical and conditional symmetries. In: Ibragimov N. H (Ed.). CRC Handbook of Lie Group Analysis of Differential Equations. Vol. 3. Boca Raton: CRC Press, 1996: 291–328.

Zhdanov R. Z., Tsyfra I. M., Popovych R. O. J. Math. Anal. Appl., 1999, 238: 101–123. https://doi.org/10.1006/jmaa.1999.6511

Grundland A. M., Tafel J. J. Math. Phys., 1995, 36: 1426–1434. https://doi.org/10.1063/1.531131

Published

11.02.2025

How to Cite

Boyko, V. (2025). Reduction of differential equations to algebraic ones . Reports of the National Academy of Sciences of Ukraine, (3), 7–12. https://doi.org/10.15407/dopovidi2014.03.007