Polya's theorem and migration + capture of a quantum particle
DOI:
https://doi.org/10.15407/dopovidi2016.11.044Keywords:
low-dimensional lattices, migration and capture, particle transport, Polya's theorem, quantum yieldAbstract
Due to Polya's theorem, the quantum yield of capture of a particle, walking randomly on a low-dimensional lattice, by a trap located on one of its nodes is always 100 %, irrespective of the capture intensity. Under quantum migration, however, it is practically always less than 100 % and, contrary to intuition, only diminishes down to zero with the capture intensity growing.
Downloads
References
Kempe J. Contemporary Physics, 2003, 44, No 4: 307—327.
Shenvi N., Kempe J., Whaley K.B. Phys. Rev. A, 2003, 67, No 5: 052307. doi: https://doi.org/10.1103/PhysRevA.67.052307
Aharonov D., Gottesman D., Irani S., Kempe J. Comm. Math. Phys., 2009, 287, No 1: 41—65. doi: https://doi.org/10.1007/s00220-008-0710-3
Polya G. Math. Ann., 1921, 84, No 1: 149—160. doi: https://doi.org/10.1007/BF01458701
Montroll E.W. Lattice statistics. In: Appl. Combinatorial Math. Ed. by E.F. Beckenbach, N.-Y.: Wiley, 1964: 96—143.
Yahnke E., Emde F., Lösch F. Tables of higher functions, N.-Y.: McGraw-Hill, 1960.
Christophorov L.N., Kharkyanen V.N. Phys. Stat. Sol. (b), 1983, 116, No 2: 415—425. doi: https://doi.org/10.1002/pssb.2221160203
Bateman H. Tables of integral transforms, Vol. 1, N.-Y.: McGraw-Hill, 1954.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.