Influence of substrate unbinding on kinetics of enzymatic catalysis
DOI:
https://doi.org/10.15407/dopovidi2019.01.040Keywords:
conformational states, enzymatic reaction velocity, enzyme-substrate interaction, single macromoleculesAbstract
In a minimal kinetic scheme with two conformational states of the enzyme-substrate complex, which differ in their catalytic activity, it is shown that the backward process of substrate unbinding does not always play an inhibitory role. On the contrary, increasing the unbinding rate constant up to certain values can only accelerate the enzyme turnover. Substrate concentration values necessary for making this effect possible are determined. The conclusions are equally applicable to the analysis of either ensemble or single-enzyme experimental data.
Downloads
References
Henri, V. (1902). Théorie générale de l’action de quelques diastases. C. R. Acad. Sci., 4, pp. 916-919. doi: https://doi.org/10.1016/j.crvi.2005.10.007
Michaelis, L. & Menten, M. L. (2013). Die Kinetik der Invertinwirkung. Biochem. Zeitschrift, 49, pp. 333-369. doi: https://doi.org/10.1016/j.febslet.2013.07.015
Cornish-Bowden, A. & Whitham, C. P. (Eds.). (2013). A century of Michaelis-Menten kinetics. FEBS Lett. (special issue), 587, pp. 2711-2894. doi: https://doi.org/10.1016/j.febslet.2013.07.035
Cornish-Bowden, A. (2015). One hundred years of Michaelis-Menten kinetics. Perspective in Science, 4, pp. 3-9. doi: https://doi.org/10.1016/j.pisc.2014.12.002
Monod, J., Wyman, J. & Changeaux, J.-P. (1965). On the nature of allosteric transitions: a plausible model. J. Mol. Biol., 12, pp. 88-118. doi: https://doi.org/10.1016/S0022-2836(65)80285-6
Rabin, B. R. (1967). Co-operative effects in enzyme catalysis: A possible kinetic model based on substrate-induced conformational isomerization. Biochem. J., 102, pp. 22c-23c. doi: https://doi.org/10.1042/bj1020022C
Cornish-Bowden A. & Cárdenas, M. L. (1987). Cooperativity in monomeric enzymes. J. Theor. Biol., 124, pp. 1-23. doi: https://doi.org/10.1016/S0022-5193(87)80248-5
Frieden, C. (1970). Kinetic aspects of regulation of metabolic processes: The hysteretic enzyme concept. J. Biol. Chem., 245, pp. 5788-5799.
Christophorov, L. N. (2015). Proteins as nanomachines: Hysteretic enzymes revisited. Springer Proceedings in Physics, 156, pp. 222-232. doi: https://doi.org/10.1007/978-3-319-06611-0_19
Kou, S. C., Cherayil, B. J., Min, W., English, B. P. & Xie X. S. (2005). Single-molecule Michaelis-Menten equations. J. Phys. Chem. B, 109, pp. 19068-19081. doi: https://doi.org/10.1021/jp051490q
English, B. P., Min, W., van Oijen, A. M., Lee, K. T., Luo, G., Sun, H., Cherayil, B. J., Kou, S. C. & Xie, X. S. (2006). Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nat. Chem. Biol., 2, pp. 87-94. doi: https://doi.org/10.1038/nchembio759
Christophorov, L. N., Kharkyanen, V. N. & Berezetskaya, N. M. (2013). Molecular self-organization: A single molecule aspect. Chem. Phys. Lett., 583, pp. 170-174. doi: https://doi.org/10.1016/j.cplett.2013.08.005
Reuveni, S., Urbakh, M. & Klafter, J. (2014). Role of substrate unbinding in Michaelis-Menten enzymatic reactions. Proc. Natl. Acad. Sci. USA, 111, pp. 4391-4396. doi: https://doi.org/10.1073/pnas.1318122111
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.