Effect of carbonic anhydrase inhibitors on enzymatic activity of isolated thylakoid CF1 ATPase
DOI:
https://doi.org/10.15407/dopovidi2016.01.092Keywords:
acetazolamide, carbonic anhydrase, CF1 ATPase, hydrolysis of ATP, photosynthetic membranes of chloroplastsAbstract
We studied the effect of carbonic anhydrase inhibitors — acetazolamide (AA) and ethoxyzolamide (EA) — on the enzymatic activity of the isolated coupling factor CF1 — a catalytic part of ATPsynthase complex of chloroplasts. The enzyme was isolated from spinach chloroplasts after their extraction with 1 mM EDTA. Carbonic anhydrase activity CF1, which was determined in a solution by the acceleration of the formation of CO2 in the bicarbonate dehydration reaction, was 73 μmol CO2 · (min · mg protein)-1 and almost 3 times more than the ATPase activity of the enzyme. Acetazolamide and ethoxyzolamide inhibit both the ATPase and carbonic anhydrase activities of CF1· I50 for Ca2+ -ATPase reaction catalyzed by isolated CF1 in solution was 2 μM for AA and EA. ATPase activity increased somewhat with the concentration of EA. 50% inhibition of the carbonic anhydrase activity was achieved in the presence of 2 μM AA and 12 μM EA, respectively. Thus, water-soluble AA and liposoluble EA inhibit both the ATPase and carbonic anhydrase enzyme activities at similar and relatively low concentrations. The functional role of the discovered carbonic anhydrase activity may consist in facilitating the transfer of protons uptaken or released in the reactions of ATP synthesis or hydrolysis, respectively.
Downloads
References
Beke-Somfai T., Lincoln P., Nordén B. Biochemistry., 2010, 49, No 3: 401–403. doi: https://doi.org/10.1021/bi901965c, PMid:20000803
Merchant S., Shaner S.L., Selman B. R. J. Biol. Chem., 1983, 258, No 2: 1026–1031. PMid:6218161
Lien S., Racker E. Methods Enzymol., 1971, 23: 547–555. doi: https://doi.org/10.1016/S0076-6879(71)23125-6
Tiedge H., Liinsdorf H., Schafer G., Schairer H. U. Proc. Natl. Acad. Sci. USA., 1985, 82: 7874–7878. doi: https://doi.org/10.1073/pnas.82.23.7874, PMid:16593626 PMCid:PMC390872
Mills J. D., Mitchell P. Biochim. Biophys. Acta., 1984, 764, No 1: 93–104. doi: https://doi.org/10.1016/0005-2728(84)90145-2
Malyan A. N. Uspekhi biol. chem., 2013, 53: 297–322 (in Russian); English translation: Malyan A. N. Biochemistry (Moscow), 2013, Vol. 78, 13: 1512–1523. doi: https://doi.org/10.1134/S0006297913130099, PMid:24490737
Onoiko E. B., Polishchuck A. V., Zolotareva E. K. Reports of the National Academy of Sciences of Ukraine, 2010, 10: 160–165 (in Russian).
Semenihin A. V., Zolotareva E. K. Reports of the National Academy of Sciences of Ukraine, 2014, 6: 151–155 (in Ukrainian). doi: https://doi.org/10.15407/dopovidi2014.06.151
Stepanova A. M., Nikiforova L. F. Methods of isolation of latent Sa2+-ATPase from the pea chloroplasts, Methods of biochemical analysis of plants, Ed. V. V. Polevoy, G. B. Maximov, Leningrad: Izd-vo Leningrad. State University, 1978: 62–68 (in Russian).
Lowry O. H., Rosenbrough N. J., Farr A. L., Randall R. J. J. Biol Chem., 1951, 193: 265–275. PMid:14907713
Engelbrecht S., Schürmann K., Junge W. Eur. J. Biochem., 1989, 179: 117–122. doi: https://doi.org/10.1111/j.1432-1033.1989.tb14528.x, PMid:2521825
Moskvin O. V., Shutova T. V., Khristin M. S., Ignatova L. K., Villarejo A., Samuelsson G., Klimov V. V., Ivanov B. N. Photosynth. Res., 2004, 79, No 1: 93–100. doi: https://doi.org/10.1023/B:PRES.0000011925.93313.db, PMid:16228403
Rudenko N. N., Ignatova L. K., Ivanov B. N. Photosynth. Res., 2007, 91, No 1: 81–89. doi: https://doi.org/10.1007/s11120-007-9148-2, PMid:17347907
Zhurikova E. M., Ignatova L. K., Semenova G. A., Rudenko N. N., Mudrik V. A., Ivanov B. N. Russ. J. Plant Physiol., 2015, 62, No 4: 564–569 (in Russian). doi: https://doi.org/10.1134/S1021443715040214
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.