Investigation of the hydrodynamic stability of a flow in the porous medium based on the renormalization group method
DOI:
https://doi.org/10.15407/dopovidi2016.01.047Keywords:
instability, mathematical model, porosity, renormalization analysis, turbulenceAbstract
Using the renormalization group method, the advanced microscopic turbulence model for porous media is developed. Based on this model, an expression for the effective kinematic viscosity with accounting the porosity is derived. The nonlinear characteristics of the transition from the laminar flow to the turbulent one, namely, the critical values of Darcy number and porosity, are obtained.
Downloads
References
Avramenko A. A., Kuznetsov A. V., Basok B. I., Blinov D. G. Phys. Fluids, 2005, 17: 094 102–1–094 102–6.
Avramenko A. A., Kuznetsov A. V., Nield D. A. J. Porous Media, 2007, 10: 435–442. doi: https://doi.org/10.1615/JPorMedia.v10.i5.20
Avramenko A. A., Kuznetsov A. V. Transrort in Porous Media, 2006, 63: 175–193. doi: https://doi.org/10.1007/s11242-005-4425-z
Antohe, B. V., Lage, J. L. International J. of Heat and Mass Transfer, 1997, No 40: 3013–3024.
Avramenko A. A. Group methods in thermal physics, Kyiv: Nauk. Dumka, 2003 (in Russian).
Forster D., Nelson D. R., Stephen M. J. Phys. Rev. A., 1977, 16, No 2: 732–749. doi: https://doi.org/10.1103/PhysRevA.16.732
McComb W. D. The physics of fluid turbulence, Oxford: Clarendon Press, 1992.
Fournier J. D., Frisch U. Phys. Rev. A., 1983, 28, No 2: 1000–1002. doi: https://doi.org/10.1103/PhysRevA.28.1000
Avramenko A. A., Basok B. I., Dmitrenko N. P. et al. Renomalizacionno-gruppovoi analiz turbulentnosti, Kyiv: VPC "Ekspres", 2013 (in Russian).
Nield D.A., Bejan A. Convection in porous media, New York: Springer, 2006. PMCid:PMC4092590
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.