Application of the Boltzmann lattice method to the analysis of nanofluid flow in a curved channel with radial irregularities of the temperature and the concentration of nanoparticles

Authors

  • A.A. Avramenko Institute of Engineering Thermophysics of the NAS of Ukraine, Kiev
  • A.I. Tyrinov Institute of Engineering Thermophysics of the NAS of Ukraine, Kiev
  • N.P. Dmytrenko Institute of Engineering Thermophysics of the NAS of Ukraine, Kiev
  • O.V. Kravchuk Institute of Engineering Thermophysics of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2017.01.052

Keywords:

centrifugal instability, curvilinear channel, heat-mass transfer, nanofluid

Abstract

The nanofluid flow in a curved channel formed by two concentric cylindrical surfaces is studied. The flow is caused by a constant azimuthal pressure gradient. The hydrodynamic and thermal characteristics of the flow are investigated. The influence of various factors on the centrifugal instability is studied as well.

Downloads

Download data is not yet available.

References

Avramenko A.A., Shevchuk I.V., Tyrinov A.I., Blinov D.G. Appl. Therm. Eng., 2014, 73, Iss. 1: 391—398. https://doi.org/10.1016/j.applthermaleng.2014.07.070

Avramenko A.A., Shevchuk I.V., Tyrinov A.I., Blinov D.G. Int. J. Heat Mass Tran., 2015, 82: 316—324. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.059

Avramenko A.A., Shevchuk I.V., Tyrinov A.I., Blinov D.G. Int. J. Therm. Sci., 2015, 92: 106—118. https://doi.org/10.1016/j.ijthermalsci.2015.01.031

Singh A.K., Raykar V.S. Colloid Polym. Sci., 2008, 286, Iss. 14: 1667—1673. https://doi.org/10.1007/s00396-008-1932-9

Walowit J., Tsao S., Diprima R. J. Appl. Mech., 1964, 31, No 4: 585—593. https://doi.org/10.1115/1.3629718

Mutabazi I., Guillerm R., Prigent A., Lepiller V., Malik S. Flow instabilities in a vertical differentially rotating cylindrical annulus with a radial temperature gradient, EUROMECH Colloquium 525, 2011, https://hal.archives-ouvertes.fr/hal-00600408.

Auser M., Busse F., Gangler, E. Eur. J. Mech., 1996, 15, No 4: 605—618.

Ali M.E., Weidman P.D. J. Fluid Mech., 1990, 220: 53—84. https://doi.org/10.1017/S0022112090003184

Guillerm R., Kang C., Savaro C., Lepiller V. Phys. Fluids., 2015, No 27: 094101. https://doi.org/10.1063/1.4930588

Joni I.M., Panatarani C., Hidayat D., Setianto, Wibawa B.M., Rianto A., Thamrin H. AIP Conf. Proc., 2013, 1554: 20—26, doi; 10.1063.1.4820275.

Barrios G., Rechtman R., Rojas J., Tovar R. J. Fluid Mech., 2005, 522: 91—100. https://doi.org/10.1017/S0022112004001983

Jung M., Choi C., Oh J. J. Nanosci. Nanotechnol., 2011, 11, No 1: 507—510. https://doi.org/10.1166/jnn.2011.3258

Published

22.05.2024

How to Cite

Avramenko, A., Tyrinov, A., Dmytrenko, N., & Kravchuk, O. (2024). Application of the Boltzmann lattice method to the analysis of nanofluid flow in a curved channel with radial irregularities of the temperature and the concentration of nanoparticles . Reports of the National Academy of Sciences of Ukraine, (1), 52–59. https://doi.org/10.15407/dopovidi2017.01.052