New original metabolitotropic endothelioprotector "Angiolin": quantum-chemical parameters and peculiarities of pharmacological action
DOI:
https://doi.org/10.15407/dopovidi2017.08.086Keywords:
cardiop rotec tive activity, endothelioprotective activity, functional groups, neuroprotective activity, quantum-chemical parameters, “Angiolin”Abstract
By means of the density functional theory with the use of the solvation model IEF PCM, the electronic and energetic properties of "Angiolin" are researched. It is established that the equilibrium structure with the lowest level of Gibbs free energy is stabilized by intramolecular oxygen bonds, and the main reaction centers are ionic groups, the groups participating in H- bonds and the heterocycle of thiotriazoline.
Downloads
References
Belenichev, I. F, Cherniy, V. I., Nagornaya, E. A., Bukhtiyarova, N. V. & Kucherenko, V. I. (2015). Neuro protection and neuroplasticity. Kiev: Logos (in Russian).
Kohn, W. & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, No. 4, pp. 1133-1145. https://doi.org/10.1103/PhysRev.140.A1133
Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98, No. 18, pp. 5648-5661. https://doi.org/10.1063/1.464913
Tomasi, J., Mennucci, B. & Cammi, R. (2005). Quantum Mechanical Continuum Solvation Models. Chem Rev., 105, No. 8, pp. 2999-3093. https://doi.org/10.1021/cr9904009
Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. J., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). General atomic and molecular electronic structure systems. J. Comput. Chem., 14, No. 11, pp. 1347-1355. https://doi.org/10.1002/jcc.540141112
Granovsky, A. A. Firefly version 8. Retrievered from http://classic.chem.msu.su/gran/firefly/index.html
Cheeseright, T., Mackey, M., Rose, S. & Vinter, A. (2006). Molecular field extrema as descriptors of bio logical activity: definition and validation. J. Chem. Inf. Model., 46, No. 2, pp. 665-676. https://doi.org/10.1021/ci050357s
Kazakova, O. A. (2011). Interaction of bioactive molecules with highly dispersed silica surface in aqueous medium: quantum chemical investigation. Poverhnost, Iss. 3, pp.13-21 (in Russian).
Belenichev, I. F., Mazur, I. A. & Bukhtiayrova, N. V. (2013). The endothelium — protective effect of 3-methyl-1,2,4-triazolyl-5-thioacrtate(S)-2,6-diaminohoexanic acid (lysinium): effects on the expression of vas cular endothelial growth factor (VEGF) and the characteristics of the endotheliocytes of the cerebral vessels of animals with cerebral ischemia. Neurochem. J., 7, No.4, pp. 296-303. https://doi.org/10.1134/S181971241304003X
Belenichev, I. F., Kucherenko, L. I., Nagornaya, E. A., Mazur, I. A. & Bukhtiyarova, N. V. (2015). Functional nitric oxide conjugate systems state/restored heart thiols of rats in modeling isadrine-pituitrin's myocardial infarction using metabolitetropic cardioprotector “Angiolin”. Int. J. Basic Clin. Pharmacol., 4, No. 1, pp. 1-5. https://doi.org/10.5455/2319-2003.ijbcp20150238
Kolesnik, Yu. M., Chekman, I. S., Mazur, I. A., Belenichev, I. F., Gorchakova, N. A. & Nagornaia, E. A. (2014). Mechanisms of development of endothelial dysfunction and search for endothelioprotectors. Zh. NAMN Ukrayiny, 20, No. 3, pp.289-299 (in Ukrainian).
Belenichev, I. F., Mazur, I. A.,Kucherenko, L. I. & Nagornaya, E. A. (2016). The molecular and ultrastructural aspects of the formation of mitochondrial dysfunction in the modeling of chronic cerebral ischemia: the mitoprotective effects of angiolin. Neurochem. J., 10, No. 2, pp. 131-136. https://doi.org/10.1134/S1819712416010025
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.