Original metabolitotropic drug — elgacin: quantum-chemical properties and features of pharmacological action

Authors

  • I.S. Chekman Kiev Medical University of UAFM
  • O.O. Kazakova Chuiko Institute of Surface Chemistry of the NAS of Ukraine, Kiev
  • R. S. Dovgan O.O. Bogomolets National Medical University, Kiev
  • A.A. Nagorna O.O. Bogomolets National Medical University, Kiev
  • I.F. Belenichev Zaporizhzhya State Medical University
  • N.A. Gorchakova O.O. Bogomolets National Medical University, Kiev
  • N.V. Bukhtiyarova Zaporizhzhya State Medical University
  • G.O. Syrovaya Kharkiv National Medical University
  • M.I. Zahorodnyi O.O. Bogomolets National Medical University, Kiev

DOI:

https://doi.org/10.15407/dopovidi2018.01.086

Keywords:

antioxidant activity, elgacin, functional groups, quantum-chemical parameters

Abstract

The density functional theory and the IEF PCM solvation model are used to investigate the electronic and energy properties of an elgacin molecule. A quite significant positive charge on protons of hydroxyl groups determines its pronounced antioxidant activity. The negative value of the lowest unoccupied molecular orbital energy determines the electrophilic properties of the molecule. The variety of functional groups evidences about a possibility of its interaction with polar and nonpolar structures of biomembranes.

Downloads

Download data is not yet available.

References

Saharova, T. S., Nikitchenko, Yu. V. & Dzyuba, V. M. (2002). Experimental study of the antiradical activity of ellagic acid in comparison with bioflavonoid preparations. Medical Chemistry, 4, No. 2, pp. 56-58 (in Ukrainian).

Yakovleva, L. V., Ivahnenko, O. K. & Saharova, T. S. (2004). The search for new promising objects of pharmacological research among ellagic tannins of the alder. Clinical Pharmacy, 8, No. 3, pp. 41-44 (in Ukrainian).

Kohn, W. & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, No. 4, pp. 1133-1145. doi: https://doi.org/10.1103/PhysRev.140.A1133

Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98, No. 18, pp. 5648-5661. doi: https://doi.org/10.1063/1.464913

Tomasi, J., Mennucci, B. & Cammi, R. (2005). Quantum mechanical continuum solvation models. Chem. Rev., 105, No. 8, pp. 2999-3093. doi: https://doi.org/10.1021/cr9904009

Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. J., Koseki S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). General atomic and molecular electronic structure system. J. Comput. Chem., 14, No. 11, pp. 1347-1355. doi: https://doi.org/10.1002/jcc.540141112

Kazakova, O. A. (2011). Interaction of bioactive molecules with highly dispersed silica surface in aqueous medium: quantum chemical investigation. Surface, Iss. 3, pp. 13-21 (in Russian).

Cheeseright, T., Mackey, M., Rose, S. & Vinter, A. (2006). Molecular field extrema as descriptors of biological activity: definition and validation. J. Chem. Inf. Model., 46, No. 2, pp. 665-676. doi: https://doi.org/10.1021/ci050357s

Published

24.04.2024

How to Cite

Chekman, I., Kazakova, O., Dovgan, R. S., Nagorna, A., Belenichev, I., Gorchakova, N., Bukhtiyarova, N., Syrovaya, G., & Zahorodnyi , M. (2024). Original metabolitotropic drug — elgacin: quantum-chemical properties and features of pharmacological action . Reports of the National Academy of Sciences of Ukraine, (1), 86–91. https://doi.org/10.15407/dopovidi2018.01.086

Most read articles by the same author(s)