Leibniz Algebras, whose all subalgebras are ideals

Authors

  • L.A. Kurdachenko Oles Gonchar Dnipro National University
  • N.N. Semko University of State Fiscal Service of Ukraine, Irpin
  • I.Ya. Subbotin National University, Los-Angeles, USA

DOI:

https://doi.org/10.15407/dopovidi2017.06.009

Keywords:

Abelian subalgebras, bilinear form, center of a Leibniz algebra, cyclic subalgebra, extraspecial subalgebra, Leibniz algebra, Lie algebra, nilpotent subalgebras

Abstract

An algebra L over a field F is said to be a Leibniz algebra (more precisely, a left Leibniz algebra), if it satisfies the Leibniz identity: [[a, b], c] = [a, [b, c]] — [b, [a, c]] for all a, b, c ∈ L. Leibniz algebras are generalizations of Lie algebras. A description of Leibniz algebras, whose subalgebras are ideals, is given.

Downloads

Download data is not yet available.

References

Bloh, A.M. (1965). On a generalization of the concept of Lie algebra. Dokl. AN USSR, 165, pp. 471-473 (in Russian).

Bloh, A.M. (1967). Cartan-Eilenberg homology theory for a generalized class of Lie algebras. Dokl. AN USSR, 175, pp. 266-268 (in Russian).

Bloh, A.M. (1971). A certain generalization of the concept of Lie algebra. Uch. Zap. Moskov. Gos. Ped. Inst., 375, pp. 9-20 (in Russian).

Loday, J.L. (1993). Une version non commutative des algebres de Lie; les algebras de Leibniz. Enseign. Math., 39, pp. 269-293.

Dobrev, V. (Ed.). (2013). Lie Theory and its applications in physics; IX International workshop. Tokyo: Springer. https://doi.org/10.1007/978-4-431-54270-4

Duplij, S. & Wess, J. (Eds.) (2001). Noncommutative Structures in Mathematics and Physics Proceedings of the NATO advanced research workshop. Dordrecht: Springer. https://doi.org/10.1007/978-94-010-0836-5

Butterfield, J. & Pagonis, C. (1999). From Physics to Philosophy. Cambridge: Cambridge Univ. Press. https://doi.org/10.1017/CBO9780511597947

Loday, J.L. & Pirashvili, T. (1993). Universal enveloping algebras ofLeibniz algebras and (co)homology. Math. Ann., 296, pp. 139-158. https://doi.org/10.1007/BF01445099

Pirashvili, T. (1994). On Leibniz homology. Ann. Inst. Fourier (Grenoble), 44, No. 2, pp. 401-411. https://doi.org/10.5802/aif.1403

Frabetti, A. (1998). Leibniz homology of dialgebras of matrices. J. Pure Appl. Algebra, 129, pp. 123-141. https://doi.org/10.1016/S0022-4049(97)00066-2

Casas, J.M. & Pirashvili, T. (2000). Ten-term exact sequence of Leibniz homology. J. Algebra, 231, pp. 258-264. https://doi.org/10.1006/jabr.1999.8364

Chupordya, V.A., Kurdachenko, L.A. & Subbotin, I.Ya. (2016). On some “minimal” Leibniz algebras. J. Algebra Appl., 15, No. 9, pp. 527-551.

Tomkinson, M.J. (1984). FC-groups. Boston: Pitman.

Published

08.09.2024

How to Cite

Kurdachenko, L., Semko, N., & Subbotin, I. (2024). Leibniz Algebras, whose all subalgebras are ideals . Reports of the National Academy of Sciences of Ukraine, (6), 9–13. https://doi.org/10.15407/dopovidi2017.06.009