Novel anionic polymethines of the fluorene series
DOI:
https://doi.org/10.15407/dopovidi2017.04.063Keywords:
absorption spectra, anionic polymethine dyes, electronic transitions, fluorescence spectra, Tris(2;2;3;3;4;4;5;5-octafluoropenthyl)-9H-fluorene-2;4;7-trisulfonateAbstract
The vinylogical series of anionic polymethine dyes based on tris(2,2,3,3,4,4,5,5-octafluoropenthyl)-9H-fluorene-2,4,7-trisulfonate is synthesized. It is shown that, in contrast to similar derivatives of polynitrofluorene, the most intense and long-wavelength electronic transition is the polymethine transition. It is found that the absorption band of this transition for highest vinylogies, in contrast to those of classic polymethines, is preserved very intense and narrow even in highly polar solvents.
Downloads
References
Tolmachev, A.I., Slominskii, Yu.L., & Ishchenko, A.A. (1998). New cyanine dyes absorbing in the NIR region. In Daehne, S., Resch-Genger, U., Wolfbeis, O.S. (Eds.), New Infrared Dyes for High Technology Applications, NATO ASI Series. 3, High Technology (pp. 385-415), Dordrecht, Boston, London: Kluwer, Vol. 52. https://doi.org/10.1007/978-94-011-5102-3_19
Bricks, J. L., Kachkovskii, A. D., Slominskii, Yu. L., Gerasov, A. O. & Popov, S. V. (2015). Molecular design of near infrared polymethine dyes: A review. Dyes Pigments, 121. Iss. 3, pp. 238-255. https://doi.org/10.1016/j.dyepig.2015.05.016
Kurdyukova, I. V., Ishchenko, A. A. (2012). Organic dyes based on fluorene and its derivatives, Uspekhi khimii, 81, No. 3, pp. 258-290 (in Russian). doi: https://doi.org/10.1070/RC2012v081n03ABEH004211
Kurdyukova, I. V., Derevyanko, N. A., Ishchenko, A. A. & Mysyk, D. D. (2009). Deeply colored anionic polymethine dyes derived from bis(2,2,3,3,4,4,5,5-octafluoropentyl) 9N-fluorene-2,7-disulfonate. Izv. AN. Ser. khim., No. 4, pp. 811-820 (in Russian).
Kurdyukova, I. V., Derevyanko, N. A., Ishchenko, A. A. & Mysyk, D. D. (2012). Synthesis and spectroscopic properties of the symmetric anionic polymethine dyes based on fluorene and its derivatives with electronwithdrawing substituents. Izv. AN. Ser. khim., No. 2, pp. 287-296 (in Russian).
Kurdyukova, I. V., Kulinich, A. V. & Ishchenko, A. A. (2012). Near-infrared squarate and croconate dianios derived from tetranitrofluorene. New J. Chem., 36, Iss. 8, pp. 1564-1567. https://doi.org/10.1039/c2nj40303j
Popov, V. I., Skripkina, V. T, Protsyk S. P., Skrynnikova, A. A., Krasovitskii, B. M. & Yagupol'skii, L. M. (1991). Electronic nature of polyfluoroalkoxysulfonyl groups and their effect on spectral characteristics of azo- and triarylpyrazoline dyes. Ukr. khim. zhurn., 57, No. 8, pp. 843-849 (in Russian).
Bassin, J. P., Cremlyn, R. J. & Swinbourne, F. J. (1992). Chlorosulfonation of Some Polynuclear Heterocyclic Compounds. Phosphorus Sulfur Silicon Relat. Elem., 72, pp. 157-170. https://doi.org/10.1080/10426509208031549
Dutto, P. C. & Mandal, D. (1956). Studies in indigoid dyes. Part XIX. Thiondigoid dyes derived from fluorine-2:7-disulphonic acid. J. Indian Chem. Soc., 33, No. 10, pp. 721-723.
Kuhn, R., Fischer, H., Neugebauer, F. A. & Fischer, H. (1962). Über Hochacide Kohlenwasserstoffe. Liebigs Ann. Chem., 654, pp. 64-81. https://doi.org/10.1002/jlac.19626540109
Kulinich, A. V., Derevyanko, N. A. & Ishchenko, A. A. (2007). Electronic structure and solvatochromism of merocyanines based on N,N-diethylthiobarbituric acid. J. Photochem. Photobiol. A., 188, No. 2-3, pp. 207-217. https://doi.org/10.1016/j.jphotochem.2006.12.014
Ishchenko, A. A. (1991). Structure and spectral-luminescent properties of polymethine dyes. Russ. Chem. Rev., 60, No. 8, pp. 865–884. https://doi.org/10.1070/RC1991v060n08ABEH001116
Ishchenko, A. A. (1998). Physicochemical aspects of the creation of modern light-sensitive materials based on polymethine dyes. Teoret. i eksperim. khimiia, 34, No. 4, pp. 214-232 (in Russian). https://doi.org/10.1007/bf02523249
Masunov, A. E., Anderson, D., Freidzon, A. Ya. & Bagaturyants, A. A. (2015). Symmetry-Breaking in Cationic Polymethine Dyes: Pt. 2. Shape of Electronic Absorption Bands Explained by the Thermal Fluctuations of the Solvent Reaction Field. J. Phys. Chem. A., 119, Iss. 26, pp. 6807-6815. https://doi.org/10.1021/acs.jpca.5b03877
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.