AGGREGATION EFFECT OF BENZOINDOSQUARAINS ON SINGLET OXYGEN GENERATION
DOI:
https://doi.org/10.15407/dopovidi2023.04.060Keywords:
squarilium dyes, aggregation, traps, singlet oxygen, electronic absorption, fluorescence spectroscopy, cytotoxicityAbstract
The effect of aggregation of benzoindosquaraines on singlet oxygen generation was investigated using electronic absorption and fluorescence spectroscopy in the presence of traps. The results demonstrate that benzoindosquarine with a hydrophobic side radical sensitizes the formation of singlet oxygen more effectively compared to its analog with a hydrophilic radical, especially as the percentage of water in DMSO and ethanol increases. This difference in sensitization efficiency is attributed to the higher propensity of the former to aggregate, in contrast to the latter. The study further reveals that the aggregate adopts a sandwich structure, which facilitates the activation of singlet oxygen sensitization through triplet-triplet energy transfer.
Downloads
References
Ilina, K., MacCuaig, W. M., Laramie, M., Jeouty, J. N., McNally, L. R. & Henary, M. (2019). Squaraine dyes: molecular design for different applications and remaining challenges. Bioconjugate Chem., 31, No. 2, pр. 194-
https://doi.org/10.1021/acs.bioconjchem.9b00482
Kurdiukova, I. V., Kulinich, A. V. & Ishchenko, A. A. (2012). Near-infrared squarate and croconate dianions derived from tetranitrofluore. New J. Chem., 34, Iss. 8, pp. 1564-1567. https://doi.org/10.1039/c2nj40303j
Wang, Y., Wang, M., Xia, G., Yang, Y., Si, L., Wang, H. & Wang, H. (2023). Maximal emission beyond 1200 nm dicyanovinyl-functionalized squaraine for in vivo vascular imaging. Chem. Commun., 59, pp. 3598-3601. https://doi.org/10.1039/d3cc00331k
Schreiber, C. L., Zhai, C., Dempsey, J. M., McGarraugh, H. H., Matthews, B. P., Christmann, C. R. & Smith, B. D. (2020). Paired agent fluorescence imaging of cancer in a living mouse using preassembled squaraine molecular probes with emission wavelengths of 690 and 830 nm. Bioconjugate Chem., 31, No. 2, рp. 214-223. https://doi. org/10.1021/acs.bioconjchem.9b00750
Ishchenko, A. A. & Syniugina, A. T. (2023). Structure and photosensitaizer ability of polymethine dyesin photodynamic therapy: A review. Theor. Exp. Chem., 58, No. 6, pp. 373-401. https://doi.org/10.1007/s11237- 023-09754-9
Mandim, F., Graça, V. C., Calhelha, R. C., Machado, I. L. F., Ferreira, L. F. V., Ferreira, I. C. F. R. & Santos, P. F. (2019). Synthesis, photochemical and in vitro cytotoxic evaluation of new iodinated aminosquaraines as potential sensitizers for photodynamic therapy. Molecules, 24, No. 5, 863. https://doi.org/10.3390/molecules24050863
Magalhães, Á. F., Graça, V. C., Calhelha, R. C., Ferreira, I. C. F. R. & Santos, P. F. (2017). Aminosquaraines as potential photodynamic agents: Synthesis and evaluation of in vitro cytotoxicity. Bioorgan. Med. Chem. Lett., 27, pр. 4467-4470. https://doi.org/10.1016/j.bmcl.2017.08.004
Wei, Y., Hu, X., Shen, L., Jin, B., Liu, X., Tan, W. & Shangguan, D. (2017). Dicyanomethylene substituted benzothiazole squaraines: the efficiency of photodynamic therapy in vitro and in vivo. EBioMedicine, 23, pр. 25-33. https://doi.org/10.1016/j.ebiom.2017.08.010
Tatikolov, A. S., Panova, I. G., Ishchenko, A. A. & Kudinova, M. A. (2010). Spectral and fluorescent study of the interaction of squarylium dyes, derivatives of 3H-indolium, with albumins. Biophysics, 55, No. 1, pp. 35-40. https://doi.org/10.1134/s0006350910010070
Syniugina, A. T., Chernii, S. V., Losytskyy, M. Yu., Ozkan, H. G., Slominskii, Yu. L., Syniugin, A. R., Pekhnyo, V., Mokhir, A. A. & Yarmoluk, S. M. (2022). N-alkyl functionalized squaraine dyes as fluorescent probes for the detection of serum albumins. Biopolym. Cell, 38, No. 2, pp. 103-116. https://doi.org/10.7124/bc.000A75
Alander, J. T., Kaartinen, I., Laakso, A., Pätilä, T., Spillmann, T., Tuchin, V. V., Venermo M. & Välisuo, P. (2012). A review of indocyanine green fluorescent imaging in surgery. Int. J. Biomed. Imaging., 940585. https://doi. org/10.1155/2012/940585
Entradas, T., Waldron, S. & Volk, M. (2020). The detection sensitivity of commonly used singlet oxygen pro- bes in aqueous environments. J. Photochem. Photobiol. B: Biology, 204, 111787. https://doi.org/10.1016/j. jphotobiol.2020.111787
Kundu, K., Knight, S. F., Willett, N., Lee, S., Taylor, W. R. & Murthy, N. (2009). Hydrocyanines: A class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angew. Chem. Int. Ed. Engl., 48, No. 2, pр. 299-303. https://doi.org/10.1002/anie.200804851
Ishchenko, А. А. (1991). Structure and spectral-luminescent properties of polymethine dyes (Reviews). Rus. Chem. Rev., 60, No. 8, pp. 865-884. https://doi.org/10.1070/rc1991v060n08abeh001116
Ishchenko, A. A., Kramarenko, F. G., Maydannic, A. G., Sereda, S. V. & Vasilenko, N. P. (1991). Structure and association of carbocyanines of the benz[c,d]indole series in binary mixtures of solvents. J. Inform. Rec. Mater., 19, No. 3, pp. 207-219.
Ashwell, G. J., Leeson, P., Bahra, G. S. & Brown, Ch. R. (1998). Aggregation-induced second-harmonic generation. J. Opt. Soc. Am. B, 15, No. 1, pp. 484-488. https://doi.org/10.1364/JOSAB.15.000484
Ishchenko, A. A., Mushkalo, I. L., Derevyanko, N. A., Zakhidov, U., Khidirova, T. S. & Nizamov, N. (1989). Association of biscyanine dyes with rigidly connected chromophores in solvents of different polarity. J. Inform. Rec. Mater., 17, No. 1, pp. 39-51.
Ibrayev, N. K., Ishchenko, A. A., Karamysheva, R. K. & Mushkalo, I. L. (2000). Influence of interaction of chromophores, linked by the unconjugated chain, on the luminescence properties of biscyanine dyes. J. Lumin., 90, No. 3-4, pp. 81-88. https://doi.org/10.1016/s0022-2313(99)00616-x
Downloads
Published
How to Cite
Section
License
Copyright (c) 2023 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.