AGGREGATION EFFECT OF BENZOINDOSQUARAINS ON SINGLET OXYGEN GENERATION

Authors

DOI:

https://doi.org/10.15407/dopovidi2023.04.060

Keywords:

squarilium dyes, aggregation, traps, singlet oxygen, electronic absorption, fluorescence spectroscopy, cytotoxicity

Abstract

The effect of aggregation of benzoindosquaraines on singlet oxygen generation was investigated using electronic absorption and fluorescence spectroscopy in the presence of traps. The results demonstrate that benzoindosquarine with a hydrophobic side radical sensitizes the formation of singlet oxygen more effectively compared to its analog with a hydrophilic radical, especially as the percentage of water in DMSO and ethanol increases. This difference in sensitization efficiency is attributed to the higher propensity of the former to aggregate, in contrast to the latter. The study further reveals that the aggregate adopts a sandwich structure, which facilitates the activation of singlet oxygen sensitization through triplet-triplet energy transfer.

Downloads

References

Ilina, K., MacCuaig, W. M., Laramie, M., Jeouty, J. N., McNally, L. R. & Henary, M. (2019). Squaraine dyes: molecular design for different applications and remaining challenges. Bioconjugate Chem., 31, No. 2, pр. 194-

https://doi.org/10.1021/acs.bioconjchem.9b00482

Kurdiukova, I. V., Kulinich, A. V. & Ishchenko, A. A. (2012). Near-infrared squarate and croconate dianions derived from tetranitrofluore. New J. Chem., 34, Iss. 8, pp. 1564-1567. https://doi.org/10.1039/c2nj40303j

Wang, Y., Wang, M., Xia, G., Yang, Y., Si, L., Wang, H. & Wang, H. (2023). Maximal emission beyond 1200 nm dicyanovinyl-functionalized squaraine for in vivo vascular imaging. Chem. Commun., 59, pp. 3598-3601. https://doi.org/10.1039/d3cc00331k

Schreiber, C. L., Zhai, C., Dempsey, J. M., McGarraugh, H. H., Matthews, B. P., Christmann, C. R. & Smith, B. D. (2020). Paired agent fluorescence imaging of cancer in a living mouse using preassembled squaraine molecular probes with emission wavelengths of 690 and 830 nm. Bioconjugate Chem., 31, No. 2, рp. 214-223. https://doi. org/10.1021/acs.bioconjchem.9b00750

Ishchenko, A. A. & Syniugina, A. T. (2023). Structure and photosensitaizer ability of polymethine dyesin photodynamic therapy: A review. Theor. Exp. Chem., 58, No. 6, pp. 373-401. https://doi.org/10.1007/s11237- 023-09754-9

Mandim, F., Graça, V. C., Calhelha, R. C., Machado, I. L. F., Ferreira, L. F. V., Ferreira, I. C. F. R. & Santos, P. F. (2019). Synthesis, photochemical and in vitro cytotoxic evaluation of new iodinated aminosquaraines as potential sensitizers for photodynamic therapy. Molecules, 24, No. 5, 863. https://doi.org/10.3390/molecules24050863

Magalhães, Á. F., Graça, V. C., Calhelha, R. C., Ferreira, I. C. F. R. & Santos, P. F. (2017). Aminosquaraines as potential photodynamic agents: Synthesis and evaluation of in vitro cytotoxicity. Bioorgan. Med. Chem. Lett., 27, pр. 4467-4470. https://doi.org/10.1016/j.bmcl.2017.08.004

Wei, Y., Hu, X., Shen, L., Jin, B., Liu, X., Tan, W. & Shangguan, D. (2017). Dicyanomethylene substituted benzothiazole squaraines: the efficiency of photodynamic therapy in vitro and in vivo. EBioMedicine, 23, pр. 25-33. https://doi.org/10.1016/j.ebiom.2017.08.010

Tatikolov, A. S., Panova, I. G., Ishchenko, A. A. & Kudinova, M. A. (2010). Spectral and fluorescent study of the interaction of squarylium dyes, derivatives of 3H-indolium, with albumins. Biophysics, 55, No. 1, pp. 35-40. https://doi.org/10.1134/s0006350910010070

Syniugina, A. T., Chernii, S. V., Losytskyy, M. Yu., Ozkan, H. G., Slominskii, Yu. L., Syniugin, A. R., Pekhnyo, V., Mokhir, A. A. & Yarmoluk, S. M. (2022). N-alkyl functionalized squaraine dyes as fluorescent probes for the detection of serum albumins. Biopolym. Cell, 38, No. 2, pp. 103-116. https://doi.org/10.7124/bc.000A75

Alander, J. T., Kaartinen, I., Laakso, A., Pätilä, T., Spillmann, T., Tuchin, V. V., Venermo M. & Välisuo, P. (2012). A review of indocyanine green fluorescent imaging in surgery. Int. J. Biomed. Imaging., 940585. https://doi. org/10.1155/2012/940585

Entradas, T., Waldron, S. & Volk, M. (2020). The detection sensitivity of commonly used singlet oxygen pro- bes in aqueous environments. J. Photochem. Photobiol. B: Biology, 204, 111787. https://doi.org/10.1016/j. jphotobiol.2020.111787

Kundu, K., Knight, S. F., Willett, N., Lee, S., Taylor, W. R. & Murthy, N. (2009). Hydrocyanines: A class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angew. Chem. Int. Ed. Engl., 48, No. 2, pр. 299-303. https://doi.org/10.1002/anie.200804851

Ishchenko, А. А. (1991). Structure and spectral-luminescent properties of polymethine dyes (Reviews). Rus. Chem. Rev., 60, No. 8, pp. 865-884. https://doi.org/10.1070/rc1991v060n08abeh001116

Ishchenko, A. A., Kramarenko, F. G., Maydannic, A. G., Sereda, S. V. & Vasilenko, N. P. (1991). Structure and association of carbocyanines of the benz[c,d]indole series in binary mixtures of solvents. J. Inform. Rec. Mater., 19, No. 3, pp. 207-219.

Ashwell, G. J., Leeson, P., Bahra, G. S. & Brown, Ch. R. (1998). Aggregation-induced second-harmonic generation. J. Opt. Soc. Am. B, 15, No. 1, pp. 484-488. https://doi.org/10.1364/JOSAB.15.000484

Ishchenko, A. A., Mushkalo, I. L., Derevyanko, N. A., Zakhidov, U., Khidirova, T. S. & Nizamov, N. (1989). Association of biscyanine dyes with rigidly connected chromophores in solvents of different polarity. J. Inform. Rec. Mater., 17, No. 1, pp. 39-51.

Ibrayev, N. K., Ishchenko, A. A., Karamysheva, R. K. & Mushkalo, I. L. (2000). Influence of interaction of chromophores, linked by the unconjugated chain, on the luminescence properties of biscyanine dyes. J. Lumin., 90, No. 3-4, pp. 81-88. https://doi.org/10.1016/s0022-2313(99)00616-x

Published

08.09.2023

How to Cite

Syniugina, A., & Ishchenko, A. (2023). AGGREGATION EFFECT OF BENZOINDOSQUARAINS ON SINGLET OXYGEN GENERATION. Reports of the National Academy of Sciences of Ukraine, (4), 60–67. https://doi.org/10.15407/dopovidi2023.04.060

Section

Chemistry