Lagrange interpolation polynomial in a linear space with inner product

Authors

  • O.F. Kashpur Taras Shevchenko National University of Kiev
  • V.V. Khlobystov Institute of Mathematics of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2018.08.012

Keywords:

accuracy on polynomials, Euclidean space, Lagrange formula, linear space

Abstract

In a linear infinitedimensional space with inner product and in a finitedimensional Euclidean space, the accuracy of the Lagrange formula on polynomials of the corresponding degree is investigated.

Downloads

References

Makarov, V. L., Khlobystov, V. V.& Yanovich, L. A. (2000). Interpolation of operators. Kiev: Naukova Dumka (in Russian).

Kashpur, O. F. & Khlobystov, V. V. (2016). To some questions of a polynomial interpolation in Euclidean spaces. Dopov. Nac. akad. nauk Ukr., No. 10, pp. 10-14 (in Ukrainian). doi: https://doi.org/10.15407/dopovidi2016.10.010

Yegorov, A. D., Sobolevsky, P. I. & Yanovich, L. A. (1985). Approximate methods for computation of continual integrals. Minsk: Nauka i Tehnika (in Russian).

Berezin, I. S. & Zhidkov, N. P. (1962). Methods of computations. Vol. 1. Moscow: Fizmatgiz (in Russian).

Babenko, K. I. (2002). Foundations of numerical analysis. Moscow, Izhevsk: RC "Regular and chaotic dynamics" (in Russian).

Trenogin, V. A. (1980). Functional analysis. Moscow: Nauka (in Russian).

Published

20.05.2024

How to Cite

Kashpur, O., & Khlobystov, V. (2024). Lagrange interpolation polynomial in a linear space with inner product . Reports of the National Academy of Sciences of Ukraine, (8), 12–17. https://doi.org/10.15407/dopovidi2018.08.012