Lagrange interpolation polynomial in a linear space with inner product

Authors

  • O.F. Kashpur Taras Shevchenko National University of Kiev
  • V.V. Khlobystov Institute of Mathematics of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2018.08.012

Keywords:

accuracy on polynomials, Euclidean space, Lagrange formula, linear space

Abstract

In a linear infinitedimensional space with inner product and in a finitedimensional Euclidean space, the accuracy of the Lagrange formula on polynomials of the corresponding degree is investigated.

Downloads

Download data is not yet available.

References

Makarov, V. L., Khlobystov, V. V.& Yanovich, L. A. (2000). Interpolation of operators. Kiev: Naukova Dumka (in Russian).

Kashpur, O. F. & Khlobystov, V. V. (2016). To some questions of a polynomial interpolation in Euclidean spaces. Dopov. Nac. akad. nauk Ukr., No. 10, pp. 10-14 (in Ukrainian). doi: https://doi.org/10.15407/dopovidi2016.10.010

Yegorov, A. D., Sobolevsky, P. I. & Yanovich, L. A. (1985). Approximate methods for computation of continual integrals. Minsk: Nauka i Tehnika (in Russian).

Berezin, I. S. & Zhidkov, N. P. (1962). Methods of computations. Vol. 1. Moscow: Fizmatgiz (in Russian).

Babenko, K. I. (2002). Foundations of numerical analysis. Moscow, Izhevsk: RC "Regular and chaotic dynamics" (in Russian).

Trenogin, V. A. (1980). Functional analysis. Moscow: Nauka (in Russian).

Published

20.05.2024

How to Cite

Kashpur, O., & Khlobystov, V. (2024). Lagrange interpolation polynomial in a linear space with inner product . Reports of the National Academy of Sciences of Ukraine, (8), 12–17. https://doi.org/10.15407/dopovidi2018.08.012