To some questions of a polynomial interpolation in Euclidean spaces

Authors

  • O.F. Kashpur Taras Shevchenko National University of Kyiv
  • V.V. Khlobystov Institute of Mathematics of the NAS of Ukraine, Kyiv

DOI:

https://doi.org/10.15407/dopovidi2016.10.010

Keywords:

Euclidean space, Hilbert space, interpolation polynomial, invariance of a solution, operator

Abstract

The conditions of invariant solvability and uniqueness of a solution of the interpolation problem for a many-variable function under the uncertainty are obtained.

Downloads

Download data is not yet available.

References

Makarov V.L., Khlobystov V.V. Foundations of polynomial operator interpolation theory, Kyiv: Institute of Mathematics of the NAS of Ukraine, 1998 (in Russian).

Makarov V.L., Khlobystov V.V., Yanovich L.A. Interpolation of operators, Kyiv: Nauk. Dumka, 2000 (in Russian).

Makarov V.L., Khlobystov V.V., Yanovich L.A. Methods of operator interpolation, Kyiv: Institute of Mathematics of the NAS of Ukraine, 2010.

Kashpur O.F., Khlobystov V.V. J. Comput. Appl. Math., 2015, No 2: 8-14.

Chapko R., Babenko C., Khlobystov V., Makarov V. Int. J. Comput. Math., 2014, 91, Iss. 8: 1673-1682. https://doi.org/10.1080/00207160.2013.858809

Gikhman I.I., Skorokhod A.V. Theory of stochastic processes, Moscow: Nauka, 1971 (in Russian).

Yegorov A.D., Sobolevsky P.I., Yanovich L.A. Approximate methods for computation of continual integrals, Minsk: Nauka i Tehnika, 1985 (in Russian).

Berezin I.S., Zhidkov N.P. Methods of computations, Vol. 1, Moscow: Fizmatgiz, 1962 (in Russian).

Babenko K.I. Foundations of numerical analysis, Moscow; Izhevsk: RC "Regular and chaotic dynamics", 2002 (in Russian).

Published

23.12.2024

How to Cite

Kashpur, O., & Khlobystov, V. (2024). To some questions of a polynomial interpolation in Euclidean spaces . Reports of the National Academy of Sciences of Ukraine, (10), 10–14. https://doi.org/10.15407/dopovidi2016.10.010