To some questions of a polynomial interpolation in Euclidean spaces
DOI:
https://doi.org/10.15407/dopovidi2016.10.010Keywords:
Euclidean space, Hilbert space, interpolation polynomial, invariance of a solution, operatorAbstract
The conditions of invariant solvability and uniqueness of a solution of the interpolation problem for a many-variable function under the uncertainty are obtained.
Downloads
References
Makarov V.L., Khlobystov V.V. Foundations of polynomial operator interpolation theory, Kyiv: Institute of Mathematics of the NAS of Ukraine, 1998 (in Russian).
Makarov V.L., Khlobystov V.V., Yanovich L.A. Interpolation of operators, Kyiv: Nauk. Dumka, 2000 (in Russian).
Makarov V.L., Khlobystov V.V., Yanovich L.A. Methods of operator interpolation, Kyiv: Institute of Mathematics of the NAS of Ukraine, 2010.
Kashpur O.F., Khlobystov V.V. J. Comput. Appl. Math., 2015, No 2: 8-14.
Chapko R., Babenko C., Khlobystov V., Makarov V. Int. J. Comput. Math., 2014, 91, Iss. 8: 1673-1682. https://doi.org/10.1080/00207160.2013.858809
Gikhman I.I., Skorokhod A.V. Theory of stochastic processes, Moscow: Nauka, 1971 (in Russian).
Yegorov A.D., Sobolevsky P.I., Yanovich L.A. Approximate methods for computation of continual integrals, Minsk: Nauka i Tehnika, 1985 (in Russian).
Berezin I.S., Zhidkov N.P. Methods of computations, Vol. 1, Moscow: Fizmatgiz, 1962 (in Russian).
Babenko K.I. Foundations of numerical analysis, Moscow; Izhevsk: RC "Regular and chaotic dynamics", 2002 (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.