On motions in a small neighborhood of zero of a multidimensional system

Authors

  • N.V. Nikitina S. P. Timoshenko Institute of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2018.06.049

Keywords:

bifurcation, nonlinear multidimensional system

Abstract

The qualitative analysis of singular points of multidimensional systems is given. In three-dimensional systems (base models) that form attractors, the special points at zero can be saddle-headed or septofocus. In the bundle of two oscillators (Duffing and Van der Pol), the sum of characteristic indices at a singular point with syn ch ro nization is zero.

Downloads

Download data is not yet available.

References

Martynyuk, A. A. (2011). Asymptotic stability criterion for nonlinear monotonic systems and its applications (Review). Int.Appl.Mech., 47, No. 5, pp. 475-534. doi: https://doi.org/10.1007/s10778-011-0474-x

Martynyuk, A. A. & Nikitina, N. V. (2017). Bifurcation and Synchronization of Two Coupled Generators. Int. Appl. Mech., 53, No. 2, pp. 209-219. doi: https://doi.org/10.1007/s10778-017-0806-6

Nikitina, N. V. (2017). Analysis of Mechanism of Stabilitu Loss and Orbit in Mathematical Models of Treedimensional Systems. Int. Appl. Mech., 53, No. 6, pp. 716-720. doi: https://doi.org/10.1007/s10778-018-0853-7

Nikitina, N. V. (2017). Principle of Symmetry in Three-Dimensional Systems. Dopov. Nac. acad. nauk Ukr., No. 7, pp. 21-28 (in Russian). doi: https://doi.org/10.15407/dopovidi2017.07.021

Anishchenko, V. S. (1990). Complex Oschillations in Simple Systems. Moscow: Nauka (in Russian).

Shilnikov, L. P., Shilnikov, A. L., Turaev, D. V. & Chua, L. O. (1998). Methods of Qualitative Theory in Nonlinear Dynamics. Part I. Singapore: World Scientific. doi: https://doi.org/10.1142/9789812798596

Shilnikov, L. P., Shilnikov, A. L., Turaev, D. V. & Chua, L. O. (2001). Methods of Qualitative Theory in Nonlinear Dynamics. Part II. Singapore: World Scientific. doi: https://doi.org/10.1142/4221

Nikitina, N. V. (2012). Nonlinear systems with complex and chaotic behavior of trajectories. Kiev: Phenix (in Russian).

Published

15.05.2024

How to Cite

Nikitina, N. (2024). On motions in a small neighborhood of zero of a multidimensional system . Reports of the National Academy of Sciences of Ukraine, (6), 49–57. https://doi.org/10.15407/dopovidi2018.06.049