Fredholm boundary- value problems with parameter in Sobolev— Slobodetsky spaces

Authors

DOI:

https://doi.org/10.15407/dopovidi2021.04.003

Keywords:

inhomogeneous boundary-value problem, continuity of a solution in a parameter, Sobolev—Slobodetskiy space

Abstract

The solutions of linear boundary-value problems for systems of ordinary differential equations, which belong to a given Sobolev —Slobodetsky space Wsp , 1 ≤ p <∞, s >1, are studied. Necessary and sufficient conditions for their continuity in a parameter are found. The applications to multipoint boundary-value problems are obtained.

Downloads

Download data is not yet available.

References

Gihman, I. (1952). On one Bogolyubov’s theorem. Ukr. Mat. Zh., 4, No. 2, pp. 215-219 (in Russian)

Krasnosel’skii, M. L. & Krein, S. G. (1955). On the averaging principle in nonlinear mechanics. Usp. Mat. Nauk, 10, Iss. 3, pp. 147-153 (in Russian).

Kurzweil, J. & Vorel, Z. (1957). Continuous dependence of solutions of differential equations on a parameter. Czechosl. Math. J., 7, No. 4, pp. 568-583.

Kiguradze, I. T. (1975). Some singular boundary value problems for ordinary differential equations. Tbilisi:

Izdat. Tbilis. Univ. (in Russian).

Kiguradze, I. T. (1988). Boundary-value problems for systems of ordinary differential equations. J. Soviet

Math., 43, No. 2, pp. 2259-2339.

Mikhailets, V. A., Pelekhata, O. B. & Reva, N. V. (2017). On the Kiguradze theorem for linear boundaryvalue problems. Dopov. Nac. akad. nauk Ukr., No. 12, pp. 8-13 (in Russian). https://doi.org/10.15407/dopovidi2017.12.008

Mikhailets, V. A., Pelekhata, O. B. & Reva, N. V. (2018). Limit theorems for the solutions of boundary-valueproblems. Ukr. Math. J., 70, No. 2, pp. 243-251. https://doi.org/10.1007/s11253-018-1498-8

Hnyp, E., Mikhailets, V. & Murach, A. (2017). Parameter-dependent one-dimensional boundary-value problems in Sobolev spaces. Electron. J. Diff. Equat., 2017, No. 81, pp. 1-13.

Gnyp, E. V., Kodliuk, Т. I. & Mikhailets, V. A. (2015). Fredholm boundary-value problems with parameter in Sobolev spaces. Ukr. Math. J., 67, No. 5, pp. 658-667. https://doi.org/10.1007/s11253-015-1105-1

Kodlyuk, T. & Mikhailets, V. (2013). Solutions of one-dimensional boundary-value problems with a parameter in Sobolev spaces. J. Math. Sci., 190, No. 4, pp. 589-599. https://doi.org/10.1007/s10958-013-1272-2

Atlasiuk, O. M. & Mikhailets, V. A. (2019). Fredholm one-dimensional boundary-value problems in Sobolev spaces. Ukr. Math. J., 70, No. 10, pp. 1526-1537. https://doi.org/10.1007/s11253-019-01588-w

Atlasiuk, O. M. & Mikhailets, V. A. (2019). Fredholm one-dimensional boundary-value problems with parameter in Sobolev spaces. Ukr. Math. J., 70, No. 11, pp. 1677-1687. https://doi.org/10.1007/s11253-019-01599-7

Hnyp, E. V. (2016). Continuity of the solutions of one-dimensional boundary-value problems with respect to the parameter in the Slobodetskii spaces. Ukr. Math. J., 68, No. 6, pp. 849-861. https://doi.org/10.1007/s11253-016-1261-y

Maslyuk, H. O. & Mikhailets, V. A. (2018). Continuity in the parameter for the solutions of one-dimensional boundary-value problems for differential systems of higher orders in Slobodetskii spaces. Ukr. Math. J., 70, No. 3, pp. 467-476. https://doi.org/10.1007/s11253-018-1510-3

Mikhailets, V. A. & Skorobohach, T. B. (2020). On solvability of inhomogeneous boundary-value problems in Sobolev—Slobodetskiy spaces. Dopov. Nac. akad. nauk Ukr., No. 4, pp. 10-14. https://doi.org/10.15407/dopovidi2020.04.010

Published

26.08.2021

How to Cite

Mikhailets, V., & Skorobohach, T. (2021). Fredholm boundary- value problems with parameter in Sobolev— Slobodetsky spaces. Reports of the National Academy of Sciences of Ukraine, (4), 3–8. https://doi.org/10.15407/dopovidi2021.04.003