Lie symmetries of generalized Kawahara equations
DOI:
https://doi.org/10.15407/dopovidi2020.12.003Keywords:
admissible transformations, equivalence group, equivalence groupoid, group classification, Kawahara equations, Lie symmetriesAbstract
We carry out the group classification of a normalized class of generalized Kawahara equations with variable coefficients. Admissible transformations are studied, and the partition of the class into two normalized subclasses is performed. For each of these subclasses, the respective equivalence groupoids are found. As a result, all equations from the class admitting Lie symmetry extensions are revealed.
Downloads
References
Fushchich, W. I. & Nikitin, A. G. (1990). Symmetry of equations of quantum mechanics. Moscow: Nauka (in Russian).
Kawahara, T. (1972). Oscillatory solitary waves in dispersive media. J. Phys. Soc. Japan, 33, pp. 260-271. https://doi.org/10.1143/JPSJ.33.260
Marchenko, A. V. (1988). Long waves in shallow liquid under ice cover. J. Appl. Math. Mech., 52, pp. 180-183. https://doi.org/10.1016/0021-8928(88)90132-3
Tkachenko, V. A. & Yakovlev, V. V. (1999). Nonlinear-dispersion models of the surface waves in sea coated by ice. Appl. Hydromech., 1, No. 3. pp. 55—64 (in Russian).
Gandarias, M. L., Rosa, M., Recio, E. & Anco, S. (2017). Conservation laws and symmetries of a generalized Kawahara equation. AIP Conf. Proc., 1836. 020072. 6 p. https://doi.org/10.1063/1.4982012
Kuriksha, O., Pošta, S. & Vaneeva, O. (2014). Group classification of variable coefficient generalized Kawahara equations. J. Phys. A: Math. Theor., 47. 045201. 19 p. https://doi.org/10.1088/1751-8113/47/4/045201
Kingston, J. G. & Sophocleous, C. (1998). On form-preserving point transformations of partial differential equations. J. Phys. A: Math. Gen., 31, No. 6, pp. 1597-1619. https://doi.org/10.1088/0305-4470/31/6/010
Popovych, R. O., Kunzinger, M. & Eshraghi, H. (2010). Admissible transformations and normalized classes of nonlinear Schrödinger equations. Acta Appl. Math., 109, pp. 315-359. https://doi.org/10.1007/s10440-008-9321-4
Popovych, R. O. & Bihlo, A. (2012). Symmetry preserving parameterization schemes. J. Math. Phys., 53, No. 7, 073102, 36 p. https://doi.org/10.1063/1.4734344
Vaneeva, O. O., Bihlo, A. & Popovych, R. O. (2020). Generalization of the algebraic method of group clas sification with application to nonlinear wave and elliptic equations. Commun. Nonlinear Sci. Numer. Simulat., 91, 105419, 28 p. https://doi.org/10.1016/j.cnsns.2020.105419
Ovsiannikov, L. V. (1978). Group analysis of differential equations. Moscow: Nauka (in Russian).
Nesterenko, M., Pošta, S., Vaneeva, O. (2016). Realizations of Galilei algebras. J. Phys. A: Math. Theor., 49, 115203, 26 pp. https://doi.org/10.1088/1751-8113/47/4/045201
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.