Lie symmetries of generalized Kawahara equations

Authors

  • O.O. Vaneeva Institute of Mathematics of the NAS of Ukraine, Kyiv
  • A.Yu. Zhalij Institute of Mathematics of the NAS of Ukraine, Kyiv

DOI:

https://doi.org/10.15407/dopovidi2020.12.003

Keywords:

admissible transformations, equivalence group, equivalence groupoid, group classification, Kawahara equations, Lie symmetries

Abstract

We carry out the group classification of a normalized class of generalized Kawahara equations with variable coefficients. Admissible transformations are studied, and the partition of the class into two normalized subclasses is performed. For each of these subclasses, the respective equivalence groupoids are found. As a result, all equations from the class admitting Lie symmetry extensions are revealed.

Downloads

Download data is not yet available.

References

Fushchich, W. I. & Nikitin, A. G. (1990). Symmetry of equations of quantum mechanics. Moscow: Nauka (in Russian).

Kawahara, T. (1972). Oscillatory solitary waves in dispersive media. J. Phys. Soc. Japan, 33, pp. 260-271. https://doi.org/10.1143/JPSJ.33.260

Marchenko, A. V. (1988). Long waves in shallow liquid under ice cover. J. Appl. Math. Mech., 52, pp. 180-183. https://doi.org/10.1016/0021-8928(88)90132-3

Tkachenko, V. A. & Yakovlev, V. V. (1999). Nonlinear-dispersion models of the surface waves in sea coated by ice. Appl. Hydromech., 1, No. 3. pp. 55—64 (in Russian).

Gandarias, M. L., Rosa, M., Recio, E. & Anco, S. (2017). Conservation laws and symmetries of a generalized Kawahara equation. AIP Conf. Proc., 1836. 020072. 6 p. https://doi.org/10.1063/1.4982012

Kuriksha, O., Pošta, S. & Vaneeva, O. (2014). Group classification of variable coefficient generalized Kawahara equations. J. Phys. A: Math. Theor., 47. 045201. 19 p. https://doi.org/10.1088/1751-8113/47/4/045201

Kingston, J. G. & Sophocleous, C. (1998). On form-preserving point transformations of partial differential equations. J. Phys. A: Math. Gen., 31, No. 6, pp. 1597-1619. https://doi.org/10.1088/0305-4470/31/6/010

Popovych, R. O., Kunzinger, M. & Eshraghi, H. (2010). Admissible transformations and normalized classes of nonlinear Schrödinger equations. Acta Appl. Math., 109, pp. 315-359. https://doi.org/10.1007/s10440-008-9321-4

Popovych, R. O. & Bihlo, A. (2012). Symmetry preserving parameterization schemes. J. Math. Phys., 53, No. 7, 073102, 36 p. https://doi.org/10.1063/1.4734344

Vaneeva, O. O., Bihlo, A. & Popovych, R. O. (2020). Generalization of the algebraic method of group clas sification with application to nonlinear wave and elliptic equations. Commun. Nonlinear Sci. Numer. Simulat., 91, 105419, 28 p. https://doi.org/10.1016/j.cnsns.2020.105419

Ovsiannikov, L. V. (1978). Group analysis of differential equations. Moscow: Nauka (in Russian).

Nesterenko, M., Pošta, S., Vaneeva, O. (2016). Realizations of Galilei algebras. J. Phys. A: Math. Theor., 49, 115203, 26 pp. https://doi.org/10.1088/1751-8113/47/4/045201

Published

28.03.2024

How to Cite

Vaneeva, O. ., & Zhalij, A. . (2024). Lie symmetries of generalized Kawahara equations . Reports of the National Academy of Sciences of Ukraine, (12), 3–10. https://doi.org/10.15407/dopovidi2020.12.003